很可惜 T 。T 您现在还不是作者身份,不能自主发稿哦~
如有投稿需求,请把文章发送到邮箱tougao@appcpx.com,一经录用会有专人和您联系
咨询如何成为春羽作者请联系:鸟哥笔记小羽毛(ngbjxym)
本篇文章分为两个部分,第一部分介绍产品数据分析中最基础的两个分析模型;第二部分结合案例来谈谈这些模型在实战中要注意的关键点。
第一个我们要介绍的模型是漏斗模型,所为漏斗模型其最早起源是从传统行业的营销商业活动中演变而来的,它是一套流程式数据分析方法。
它的主要模型框架:通过检测目标流程中起点(用户进入),到最后完成目标动作。这其中经历过的每个节点的用户量与留存量,来考核每个节点的好坏,来找到最需要优化的节点。可以说漏斗模型是用户行为状态以及从起点到终点各阶段用户转化率情况的重要分析模型。
在这之前我们要先说一个前提:所有漏斗模型的建立一定要是在产品的主流程之上,只有这样数据量才会有足够大样本性。
让我们拿一个电商中从进入网站到购买的过程漏斗数据集来看,如下:
图1. 购买过程数据漏斗
在第一步我们要先明确我们的目标:分析用户从进入网站到最终转化购买这个过程中,用户从进入以及到最终实现目标的各个环节的转化率,并最终找到这个路径中用户流失最多的环节。
根据这个目标我们在上面的例子中,可以直观的看到这样的一个事实:用户从网站首页到商品详情页的这一环节转化率相对于其他环节是最低的。
好,那到这我们就算分析完毕了吗?找到产品的症结所在了吗?显然,答案是否定。
谈到漏斗模型的转化率这里就有两个实战中关注点是需要注意的:
我们不能说某个环节的转化率最低,就一定是某一个环节出现了问题,比如上面的例子,在访客进入到商品浏览这个流程中,其转化率有90%是所有环节中最高的。
但是这能说明什么呢?假设上个月这个环节是100%,那这里反而成为产品此时最大的问题所在。此外如果和同行业比的话,发现行业同类产品的这个环节平均转化率是95%,那还是说明这个阶段不是足够好的。
这就是说在我们拿到数据后,要按照一定的对比维度去进行分析,得到的结果才是有意义的。
总结来说,在漏斗模型建立完成后,我们对数据要从如下三个维度去进行分析:
纵向对比:也就是让产品与自己历史同期进行对比,这种对比适用于对某一流程或其中某个步骤进行改进或优化的效果监控;
横向对比:通过将本产品的同一流程转化率在竞品中进行横向对比,定位自身产品出现的问题;
来源分类:细分来源或不同的客户类型在转化率上的表现,从而完成客户群体划分。在日常分析中我们通常用于网站广告或推广的效果的评价。
大家可以根据自己的需要去挑选维度来分析。
在实际的场景中同一款产品会有各种各样的用户类型,比如用户来自于不同的区域、不同的生命周期、不同的性别,不同的年龄,他们在漏斗中的表现都是不一样的,也就造成了在用户漏斗中的转化率往往是有很大的差异的,因此我们需要将不同的人群拆分成一个个小的漏斗去逐一分析,一点点去分析结果。
让我们再总结一下所谓漏斗模型将任意产品流程抽象成一个个的关键步骤,如案例中的购物流程。然后用转化率来衡量每一个步骤的表现,最后通过异常的数据指标找出有问题的环节。从而解决问题优化该步骤,最终达到提升转化率的目的。
用一句话来说漏斗模型的核心思想就是分解和归类量化。
在定位了产品出现问题的环节后,接下来让我们来看看,如何具体定位指标。
让我们先来看下百科中的定义
“杜邦分析法(DuPont Analysis)是利用几种主要的财务比率之间的关系来综合地分析企业的财务状况。具体来说,它是一种用来评价公司赢利能力和股东权益回报水平,从财务角度评价企业绩效的一种经典方法。其基本思想是将企业净资产收益率逐级分解为多项财务比率乘积,这样有助于深入分析比较企业经营业绩。”
其实说白了就是将指标进行肢解,将大指标拆分成若干个底层应用中直接触达的动作。
如果用一张图来表示,就是如下:
图2. 杜邦分析核心模式
一般的我们将指标分为如下三个角色:
核心指标
子指标(若干层级)
孙代指标(让抽象的指标与APP中动作进行关联上的指标)
那为什么要这么做呢?直接看指标不行吗?
其实是这样的产品本身涉及到的各种指标类型非常的多,但产品经理无法对这些指标面面俱到。往往此时产品经理只能去关注本业务核心指标,而这些指标已经远远脱离了现实APP中可以直观感受到的部分。
举例来说,当我们讨论销售额的时候讨论的是什么?这不是一句俏皮话,这是一个现实的问题。如果直接谈销售额我们很难有直观感受,但往往通过指标拆分后,我们拿到的结果告诉我们销售额其就是一个产品中支付界面的流程或者投放中产品触达的最优组合。
正是因为存在如此大的抽象层级差距,也就导致了在我们看到产品核心指标(注意一定要监控产品业务核心指标,而不是笼统的DAU等数据,如果对这个概念不太理解可以去我的主页看我本系列的第一篇文章)发生变化的时候,很难清楚到底是什么原因导致本指标的上升或下降呢?
拿一个电商的产品案例来说,对于电商类的产品来说核心指标就是成交金额。
而当我们发现在我们某次日常运营活动投放后,产品的成交金额不增反而出现了下跌,这个时候问题就出现了到底是什么让我们的产品出现这样的问题了呢?
那么这个时候就需要通过杜邦分析模型来寻找答案了。
首先我们将电商成交额做如下拆分:
核心指标拆分:销售额 = 付费人数 * 客单价
子指标拆分:付费人数 = UV * 付费转化率
孙代指标拆分:
图3. UV拆分结果
我们拿此处UV的例子来看,经过层层拆分,我们看到了最后和产品相关的是我们本次活动用户步骤与步骤奖励数这两个指标。
因此我们就可以根据如上的图中的指标去看数据来一步步寻找产品的问题;
我们拿到的数据如下:
Part 1. 核心指标:
从这我们就能看到核心指标中付费人数出现了问题,那么我们就找到了入手调查的地方,让我们继续拆分付费人数这个指标。
Part 2. 子指标拆分:
在付费转化率几乎没有变化的情况下,UV就成了这最大的问题。
Part 3. 孙代指标拆分:
Part N. 中间省去若干个孙代指标的最终对比
那么在这我们就能清楚的看到了,由于我们本次的活动要求用户过多,长达7步导致了用户很多程度下不愿意参与本活动,导致了流失与交易金额的下降。
到这我们产品的解决方案也就出来了需要对活动进行修改,减少活动用户步骤或者增大奖励。
以上是我们数据分析中最常用的两个分析模型,用好这两个完全可以解决日常工作中大多数数据决策问题。当然数据分析这里还有很多其它的数据分析方法,我会在本系列后面的文章中一一介绍,感兴趣的大家可以关注期待。
本文为作者独立观点,不代表鸟哥笔记立场,未经允许不得转载。
《鸟哥笔记版权及免责申明》 如对文章、图片、字体等版权有疑问,请点击 反馈举报
Powered by QINGMOB PTE. LTD. © 2010-2022 上海青墨信息科技有限公司 沪ICP备2021034055号-6
我们致力于提供一个高质量内容的交流平台。为落实国家互联网信息办公室“依法管网、依法办网、依法上网”的要求,为完善跟帖评论自律管理,为了保护用户创造的内容、维护开放、真实、专业的平台氛围,我们团队将依据本公约中的条款对注册用户和发布在本平台的内容进行管理。平台鼓励用户创作、发布优质内容,同时也将采取必要措施管理违法、侵权或有其他不良影响的网络信息。
一、根据《网络信息内容生态治理规定》《中华人民共和国未成年人保护法》等法律法规,对以下违法、不良信息或存在危害的行为进行处理。
1. 违反法律法规的信息,主要表现为:
1)反对宪法所确定的基本原则;
2)危害国家安全,泄露国家秘密,颠覆国家政权,破坏国家统一,损害国家荣誉和利益;
3)侮辱、滥用英烈形象,歪曲、丑化、亵渎、否定英雄烈士事迹和精神,以侮辱、诽谤或者其他方式侵害英雄烈士的姓名、肖像、名誉、荣誉;
4)宣扬恐怖主义、极端主义或者煽动实施恐怖活动、极端主义活动;
5)煽动民族仇恨、民族歧视,破坏民族团结;
6)破坏国家宗教政策,宣扬邪教和封建迷信;
7)散布谣言,扰乱社会秩序,破坏社会稳定;
8)宣扬淫秽、色情、赌博、暴力、凶杀、恐怖或者教唆犯罪;
9)煽动非法集会、结社、游行、示威、聚众扰乱社会秩序;
10)侮辱或者诽谤他人,侵害他人名誉、隐私和其他合法权益;
11)通过网络以文字、图片、音视频等形式,对未成年人实施侮辱、诽谤、威胁或者恶意损害未成年人形象进行网络欺凌的;
12)危害未成年人身心健康的;
13)含有法律、行政法规禁止的其他内容;
2. 不友善:不尊重用户及其所贡献内容的信息或行为。主要表现为:
1)轻蔑:贬低、轻视他人及其劳动成果;
2)诽谤:捏造、散布虚假事实,损害他人名誉;
3)嘲讽:以比喻、夸张、侮辱性的手法对他人或其行为进行揭露或描述,以此来激怒他人;
4)挑衅:以不友好的方式激怒他人,意图使对方对自己的言论作出回应,蓄意制造事端;
5)羞辱:贬低他人的能力、行为、生理或身份特征,让对方难堪;
6)谩骂:以不文明的语言对他人进行负面评价;
7)歧视:煽动人群歧视、地域歧视等,针对他人的民族、种族、宗教、性取向、性别、年龄、地域、生理特征等身份或者归类的攻击;
8)威胁:许诺以不良的后果来迫使他人服从自己的意志;
3. 发布垃圾广告信息:以推广曝光为目的,发布影响用户体验、扰乱本网站秩序的内容,或进行相关行为。主要表现为:
1)多次发布包含售卖产品、提供服务、宣传推广内容的垃圾广告。包括但不限于以下几种形式:
2)单个帐号多次发布包含垃圾广告的内容;
3)多个广告帐号互相配合发布、传播包含垃圾广告的内容;
4)多次发布包含欺骗性外链的内容,如未注明的淘宝客链接、跳转网站等,诱骗用户点击链接
5)发布大量包含推广链接、产品、品牌等内容获取搜索引擎中的不正当曝光;
6)购买或出售帐号之间虚假地互动,发布干扰网站秩序的推广内容及相关交易。
7)发布包含欺骗性的恶意营销内容,如通过伪造经历、冒充他人等方式进行恶意营销;
8)使用特殊符号、图片等方式规避垃圾广告内容审核的广告内容。
4. 色情低俗信息,主要表现为:
1)包含自己或他人性经验的细节描述或露骨的感受描述;
2)涉及色情段子、两性笑话的低俗内容;
3)配图、头图中包含庸俗或挑逗性图片的内容;
4)带有性暗示、性挑逗等易使人产生性联想;
5)展现血腥、惊悚、残忍等致人身心不适;
6)炒作绯闻、丑闻、劣迹等;
7)宣扬低俗、庸俗、媚俗内容。
5. 不实信息,主要表现为:
1)可能存在事实性错误或者造谣等内容;
2)存在事实夸大、伪造虚假经历等误导他人的内容;
3)伪造身份、冒充他人,通过头像、用户名等个人信息暗示自己具有特定身份,或与特定机构或个人存在关联。
6. 传播封建迷信,主要表现为:
1)找人算命、测字、占卜、解梦、化解厄运、使用迷信方式治病;
2)求推荐算命看相大师;
3)针对具体风水等问题进行求助或咨询;
4)问自己或他人的八字、六爻、星盘、手相、面相、五行缺失,包括通过占卜方法问婚姻、前程、运势,东西宠物丢了能不能找回、取名改名等;
7. 文章标题党,主要表现为:
1)以各种夸张、猎奇、不合常理的表现手法等行为来诱导用户;
2)内容与标题之间存在严重不实或者原意扭曲;
3)使用夸张标题,内容与标题严重不符的。
8.「饭圈」乱象行为,主要表现为:
1)诱导未成年人应援集资、高额消费、投票打榜
2)粉丝互撕谩骂、拉踩引战、造谣攻击、人肉搜索、侵犯隐私
3)鼓动「饭圈」粉丝攀比炫富、奢靡享乐等行为
4)以号召粉丝、雇用网络水军、「养号」形式刷量控评等行为
5)通过「蹭热点」、制造话题等形式干扰舆论,影响传播秩序
9. 其他危害行为或内容,主要表现为:
1)可能引发未成年人模仿不安全行为和违反社会公德行为、诱导未成年人不良嗜好影响未成年人身心健康的;
2)不当评述自然灾害、重大事故等灾难的;
3)美化、粉饰侵略战争行为的;
4)法律、行政法规禁止,或可能对网络生态造成不良影响的其他内容。
二、违规处罚
本网站通过主动发现和接受用户举报两种方式收集违规行为信息。所有有意的降低内容质量、伤害平台氛围及欺凌未成年人或危害未成年人身心健康的行为都是不能容忍的。
当一个用户发布违规内容时,本网站将依据相关用户违规情节严重程度,对帐号进行禁言 1 天、7 天、15 天直至永久禁言或封停账号的处罚。当涉及欺凌未成年人、危害未成年人身心健康、通过作弊手段注册、使用帐号,或者滥用多个帐号发布违规内容时,本网站将加重处罚。
三、申诉
随着平台管理经验的不断丰富,本网站出于维护本网站氛围和秩序的目的,将不断完善本公约。
如果本网站用户对本网站基于本公约规定做出的处理有异议,可以通过「建议反馈」功能向本网站进行反馈。
(规则的最终解释权归属本网站所有)