APP推广合作
联系“鸟哥笔记小乔”
简单介绍常用的线性回归模型
2021-06-25 17:33:02

 线性回归是机器学习中的入门模型,也是比较常用的模型之一。


今天和大家分享一下线性回归模型的一些内容。

01—线性回归介绍

其实线性回归模型,很多朋友应该都在高中阶段接触过。但高中接触的,只是一元线性回归。

 

所谓一元线性回归,指的是自变量的个数只有1个的情况下(即Y=aX+b),而自变量个数有多个时候,则是多元线性回归。直观的表达式:



从应用的角度上讲,明显多元线性回归的实践应用更广泛一些,毕竟一个自变量的情况很少。


下面我们看一下回归拟合。由于多元(即多维)的情况下,图形是画不出来的,因此我们这里以二维的图形为例。



图中的横轴即自变量,纵轴即因变量。每个蓝点是样本点,样本点汇合在一起,也就是数据集,我们用下面的集合来表示数据集:



其中,x是p维向量,y是实数。因此,关于自变量、因变量可以记:



红色直线则是拟合后的回归方程,直线上的红点是样本点的映射。


回归的目的,即基于样本点,找到这样的一条直线,使得这条直线能尽可能拟合样本点的趋势。



如何找到这条直线呢,也就是求w,使得“尽可能拟合”?其实关于拟合的方式,有很多方法,我们今天讲最常用的最小二乘法,以及在此基础上改良的岭回归。

02—最小二乘法

下面我们首先详细介绍一下最小二乘法的概念以及不同思路的解释。

(1)最小二乘法的定义

我们首先定义一下损失函数(关于损失函数,后面会有一篇专门的介绍,主要的作用是评价模型预测值和真实值之间的差距,也就是模型准确度,并以此进行机器学习)。



这个比较好理解,其实就是模型的预测值f(w)与真实值y的差的平方和。我们的目标是求参数向量w,使得损失函数L(w)达到最小值,这样就使得模型(也就是回归直线)与真实的样本集拟合最好。用这种方法,就是最小二乘法。


从名称中也可以看出来,就是使得“二乘法”最小。


当然了,损失函数如果是其他形式,就是其他进行线性回归寻找直线的方法了,就不是最小二乘法。

(2)最小二乘的代数解法

代数解法具体就不展开了,简单说一下思路,了解即可。


首先,对损失函数经过一些列的变形计算,然后令导数为0,则可以取最值,我们可以得出最终w的取值:



这就是通过代数方法,求解最小二乘法的矩阵表达式。这个表达式比较重要,相当于最终的结论,下文也会提及。

(3)最小二乘的几何视角

从几何上,最小二乘法该如何表示呢?参考下图:



其实最小二乘就是使得上图中虚线部分的长度求平方后的加和值最小的直线。


近期看了一个视频,讲最小二乘法的另外一种几何表达。令



来求β使得Y与X的组合距离最近。由于投影最近,因此有:



更容易可以得到表达式,和代数的解法是一致的。


(4)最小二乘的概率视角


最后再看一下概率和最小二乘的关系。首先,我们记:



根据统计学的知识,很容易知道:


根据极大似然的参数估计方法,(省略一万步),最终有:



我们发现当噪音服从均值为0的正态分布时,通过极大似然估计得到的回归方程和最小二乘法的表达式是一样的。

03—过拟合及正则化相关

下面我们聊一下关于过拟合以及解决过拟合的方法。

(1)什么是过拟合

上面我们讲的最小二乘法的过程,其实是比较理想化的,即认为样本量远远大于特征维度。在表现为是可逆的。


但在实践操作中,经常出现样本容量过少或者特征维度过多的情况。这时其实不可逆。


比如下图:



如果我们只有两个红色的样本点,如果按照最小二乘的方法,那么将得出红色的回归直线,符合使得损失函数最小。但是呢,实际上的样本是上图中的所有点,明显这条回归直线并不是最优的。


极端情况下,只有一个样本,那通过该样本可以有无数条线,都使得损失函数为0。


这就是过拟合。

(2)正则化

如何解决过拟合呢?


其实上文也提到了,过拟合是由于样本容量远小于特征维度导致的。那么相应的,我们可以通过增加样本容量或者减少特征维度(即降维,例如主成分分析)进行解决过拟合。


除此之外,还有一种方法,这就是正则化。


其实正则化就是在原来的损失函数上加上一个正则化项(也可以称为惩罚项)。主要就是参数λ。最终的优化目标由原来的残差平方和最小优化成使得残差平方和+惩罚项最小。



上面是两种不同的正则化项,主要是范数是1还是2的区别。第一种我们称为L1正则,也叫lasso正则化;第二种我们成为岭回归。


加上正则化项后,原来的最小二乘的矩阵表达式变为(具体计算过程省略):



下图是不同λ取值时对回归方程的影响:



关于线性回归相关的内容,今天先介绍这些。很多细节没有过多展开,毕竟内容确实比较多一些。这里就先理了理核心脉络,对该算法有个整体上的认知即可。至于具体的应用,咱们后续结合案例再来分享,谢谢大家!

-END-

首席数据科学家
分享到朋友圈
收藏
收藏
评分

综合评分:

我的评分
Xinstall 15天会员特权
Xinstall是专业的数据分析服务商,帮企业追踪渠道安装来源、裂变拉新统计、广告流量指导等,广泛应用于广告效果统计、APP地推与CPS/CPA归属统计等方面。
20羽毛
立即兑换
一书一课30天会员体验卡
领30天VIP会员,110+门职场大课,250+本精读好书免费学!助你提升职场力!
20羽毛
立即兑换
顺丰同城急送全国通用20元优惠券
顺丰同城急送是顺丰推出的平均1小时送全城的即时快送服务,专业安全,准时送达!
30羽毛
立即兑换
首席数据科学家
首席数据科学家
发表文章59
用数据科学的方法赋能业务,发挥数据价值,做业界最好的数据科学家。
确认要消耗 0羽毛购买
简单介绍常用的线性回归模型吗?
考虑一下
很遗憾,羽毛不足
我知道了

我们致力于提供一个高质量内容的交流平台。为落实国家互联网信息办公室“依法管网、依法办网、依法上网”的要求,为完善跟帖评论自律管理,为了保护用户创造的内容、维护开放、真实、专业的平台氛围,我们团队将依据本公约中的条款对注册用户和发布在本平台的内容进行管理。平台鼓励用户创作、发布优质内容,同时也将采取必要措施管理违法、侵权或有其他不良影响的网络信息。


一、根据《网络信息内容生态治理规定》《中华人民共和国未成年人保护法》等法律法规,对以下违法、不良信息或存在危害的行为进行处理。
1. 违反法律法规的信息,主要表现为:
    1)反对宪法所确定的基本原则;
    2)危害国家安全,泄露国家秘密,颠覆国家政权,破坏国家统一,损害国家荣誉和利益;
    3)侮辱、滥用英烈形象,歪曲、丑化、亵渎、否定英雄烈士事迹和精神,以侮辱、诽谤或者其他方式侵害英雄烈士的姓名、肖像、名誉、荣誉;
    4)宣扬恐怖主义、极端主义或者煽动实施恐怖活动、极端主义活动;
    5)煽动民族仇恨、民族歧视,破坏民族团结;
    6)破坏国家宗教政策,宣扬邪教和封建迷信;
    7)散布谣言,扰乱社会秩序,破坏社会稳定;
    8)宣扬淫秽、色情、赌博、暴力、凶杀、恐怖或者教唆犯罪;
    9)煽动非法集会、结社、游行、示威、聚众扰乱社会秩序;
    10)侮辱或者诽谤他人,侵害他人名誉、隐私和其他合法权益;
    11)通过网络以文字、图片、音视频等形式,对未成年人实施侮辱、诽谤、威胁或者恶意损害未成年人形象进行网络欺凌的;
    12)危害未成年人身心健康的;
    13)含有法律、行政法规禁止的其他内容;


2. 不友善:不尊重用户及其所贡献内容的信息或行为。主要表现为:
    1)轻蔑:贬低、轻视他人及其劳动成果;
    2)诽谤:捏造、散布虚假事实,损害他人名誉;
    3)嘲讽:以比喻、夸张、侮辱性的手法对他人或其行为进行揭露或描述,以此来激怒他人;
    4)挑衅:以不友好的方式激怒他人,意图使对方对自己的言论作出回应,蓄意制造事端;
    5)羞辱:贬低他人的能力、行为、生理或身份特征,让对方难堪;
    6)谩骂:以不文明的语言对他人进行负面评价;
    7)歧视:煽动人群歧视、地域歧视等,针对他人的民族、种族、宗教、性取向、性别、年龄、地域、生理特征等身份或者归类的攻击;
    8)威胁:许诺以不良的后果来迫使他人服从自己的意志;


3. 发布垃圾广告信息:以推广曝光为目的,发布影响用户体验、扰乱本网站秩序的内容,或进行相关行为。主要表现为:
    1)多次发布包含售卖产品、提供服务、宣传推广内容的垃圾广告。包括但不限于以下几种形式:
    2)单个帐号多次发布包含垃圾广告的内容;
    3)多个广告帐号互相配合发布、传播包含垃圾广告的内容;
    4)多次发布包含欺骗性外链的内容,如未注明的淘宝客链接、跳转网站等,诱骗用户点击链接
    5)发布大量包含推广链接、产品、品牌等内容获取搜索引擎中的不正当曝光;
    6)购买或出售帐号之间虚假地互动,发布干扰网站秩序的推广内容及相关交易。
    7)发布包含欺骗性的恶意营销内容,如通过伪造经历、冒充他人等方式进行恶意营销;
    8)使用特殊符号、图片等方式规避垃圾广告内容审核的广告内容。


4. 色情低俗信息,主要表现为:
    1)包含自己或他人性经验的细节描述或露骨的感受描述;
    2)涉及色情段子、两性笑话的低俗内容;
    3)配图、头图中包含庸俗或挑逗性图片的内容;
    4)带有性暗示、性挑逗等易使人产生性联想;
    5)展现血腥、惊悚、残忍等致人身心不适;
    6)炒作绯闻、丑闻、劣迹等;
    7)宣扬低俗、庸俗、媚俗内容。


5. 不实信息,主要表现为:
    1)可能存在事实性错误或者造谣等内容;
    2)存在事实夸大、伪造虚假经历等误导他人的内容;
    3)伪造身份、冒充他人,通过头像、用户名等个人信息暗示自己具有特定身份,或与特定机构或个人存在关联。


6. 传播封建迷信,主要表现为:
    1)找人算命、测字、占卜、解梦、化解厄运、使用迷信方式治病;
    2)求推荐算命看相大师;
    3)针对具体风水等问题进行求助或咨询;
    4)问自己或他人的八字、六爻、星盘、手相、面相、五行缺失,包括通过占卜方法问婚姻、前程、运势,东西宠物丢了能不能找回、取名改名等;


7. 文章标题党,主要表现为:
    1)以各种夸张、猎奇、不合常理的表现手法等行为来诱导用户;
    2)内容与标题之间存在严重不实或者原意扭曲;
    3)使用夸张标题,内容与标题严重不符的。


8.「饭圈」乱象行为,主要表现为:
    1)诱导未成年人应援集资、高额消费、投票打榜
    2)粉丝互撕谩骂、拉踩引战、造谣攻击、人肉搜索、侵犯隐私
    3)鼓动「饭圈」粉丝攀比炫富、奢靡享乐等行为
    4)以号召粉丝、雇用网络水军、「养号」形式刷量控评等行为
    5)通过「蹭热点」、制造话题等形式干扰舆论,影响传播秩序


9. 其他危害行为或内容,主要表现为:
    1)可能引发未成年人模仿不安全行为和违反社会公德行为、诱导未成年人不良嗜好影响未成年人身心健康的;
    2)不当评述自然灾害、重大事故等灾难的;
    3)美化、粉饰侵略战争行为的;
    4)法律、行政法规禁止,或可能对网络生态造成不良影响的其他内容。


二、违规处罚
本网站通过主动发现和接受用户举报两种方式收集违规行为信息。所有有意的降低内容质量、伤害平台氛围及欺凌未成年人或危害未成年人身心健康的行为都是不能容忍的。
当一个用户发布违规内容时,本网站将依据相关用户违规情节严重程度,对帐号进行禁言 1 天、7 天、15 天直至永久禁言或封停账号的处罚。当涉及欺凌未成年人、危害未成年人身心健康、通过作弊手段注册、使用帐号,或者滥用多个帐号发布违规内容时,本网站将加重处罚。


三、申诉
随着平台管理经验的不断丰富,本网站出于维护本网站氛围和秩序的目的,将不断完善本公约。
如果本网站用户对本网站基于本公约规定做出的处理有异议,可以通过「建议反馈」功能向本网站进行反馈。
(规则的最终解释权归属本网站所有)

我知道了
恭喜你~答对了
+5羽毛
下一次认真读哦
成功推荐给其他人
+ 10羽毛
评论成功且进入审核!审核通过后,您将获得10羽毛的奖励。分享本文章给好友阅读最高再得15羽毛~
(羽毛可至 "羽毛精选" 兑换礼品)
好友微信扫一扫
复制链接