APP推广合作
联系“鸟哥笔记小乔”
数据分析整体框架之落地全流程讲解
2022-03-21 10:54:56



数据分析的目的是把隐藏在杂乱无章的数据背后的信息集中和提炼出来,总结出研究对象的内在规律。但还是有很多小伙伴觉得稀里糊涂的,觉得太概念化了。让我们不知道“要做什么”。此时,我们就需要对问题进行拆解,梳理一个整体的框架流程,让大家对数据分析有个全局观。而这个拆解过程就要求一个数据分析师对数据分析的整体框架有所了解。


那么,本期邀请了成功转行数据分析——刘珍珍,《溜溜笔记说》号主,两周自学从会计转行数据分析师,四年数据分析经验,尤其擅长数据可视化,其中两份Tableau可视化设计作品获得Tableau中国官方认可。
数据分析学习,在于将别人的知识转化成自己的知识,食之化尽,举一反三。来阐述数据分析的整体框架和流程sop的相关内容。详细讲解九大数据分析方法,并用实际应用场景内容来辅助说明。

将会为大家分享《数据分析整体框架之落地全流程讲解的相关内容,分为五部分:
1、发现问题
2、需求处理
3、数据处理
4、数据分析(九大数据分析方法讲解)
5、数据展现



从事数据分析相关工作的4年时间里,我慢慢沉淀了一些数据分析方面的知识,来分享给大家关于数据分析整体框架之落地全流程,我把数据分析流程分成了五大块阶段: 发现问题→需求处理→数据处理→数据分析→数据展现。



发现问题既可以是需求方发现,我们被推动来分析,也可以自己发现,我们主动来分析。所以,先来说发现问题



先看一个例子,一位烤串大爷说赚的太少了,这个“少”怎么得来的。与过去比少了?与目标比少了?与行业平均水平比少了, 还是与其他同商圈的烤串大爷比少了?等。这个少的判断就隐藏着数据分析思维。


1)探索问题


以数据分析思维思考问题,再去进一步拆解、分析、探索该问题。尤其是有效问题。有效问题才有意义。

2)确定有效问题

什么是有效问题呢?
◆是否有价值:与公司、部门okr相关吗?是否触及到了公司整体策略呢?
◆是否涉及公司核心指标:比如gmv。
◆是否影响面广: 反向思考,如果这个问题不解决,会影响多少营收或用户
◆是否可规避: 比如有时候问题的出现是因为国家宏观层面做了某些调整,这个问题就是不可规避。
◆是否有时效: 现在分析过去的某个问题,且过去的问题已不会对现在产生影响。浪费时间。

3)发现问题的方式

那么,怎么发现有效问题,我也总结了7点,大家可以自己看下。
◆与历史对比
◆与同期对比
◆与总体对比
◆与竞品对比
◆与目标对比
◆与经验对比
◆与预测对比


4)化繁为简


有时候我们面对的问题会比较多,可以按照四象限法则、问题类型、优先级这三种方式归一下类,再去决定先解决哪个。


还有时候我们遇到的问题很棘手,大且复杂。如何着手去解决?这时候,

我们需要将复杂的问题“拆而解之”,而非将焦点浮在问题表面,把大问题围绕核心点拆解成可以行动的小问题,找到切入点。打个比方,某个线上产品营收下降了10%,将10%拆解到各个子产品线、各个地区维度等,拆解出下降由哪方面带来,再针对性的逐个分析。


5)化繁为简

最后最重要的一点: 站在业务角度想问题。比如这个问题有多大的业务价值,能实际解决什么样的业务问题。吃透业务逻辑,才能在分析上游刃有余。

—▼—



关于需求处理这个问题显然是出在需求沟通上。没有沟通清楚需求就动手,不但自己做的辛苦,业务部门也不满意。需求处理的不合理,业务部门看了不解决问题,就会反反复复地再提需求。因此,需求沟通很重要!



1)需求类型


一般来说,数据分析师接到的需求有4种,大家可以看下。

◆纯取数

◆数据分析

◆报表开发

◆指标口径迭代


2)需求确认内容

接到需求进行详细需求沟通的时候,需要跟需求方确认好背景、指标口径、数据维度、底层表逻辑、资源配置、完成时间、数据安全。

3)需求文档沉淀

有时需求方并没想这么多,分析师最好有独立想法,将这些细节主动详细沟通下,既便于分析工作的开展,也避免后续扯皮。同时,这些确认的内容做好沉淀成需求文档。

4)需求冲突的应对


沉淀的过程也是思考的过程,比起直接开干更能及时的发现些隐藏问题。

在接需求的时候,有时候会遇到需求冲突,比如:

◆需求较多→归类个轻重缓急;

◆需求紧急→与其他需求方协调是否可以适当延后,以及协调人员资源、时间资源;

◆需求不合理→引导需求方或者求助上级领导。比如需求方提了需求要在BI上展示很明细的数据,量大还耗费BI资源,可进一步与需求方沟通,摸清楚他们明细数据的需求目的,是下载下来还要在excel上进一步处理?那么可以引导需求方,表示可在BI一步到位处理成他想要的数据;

◆需求涉及数据安全→是否涉及跨部门查看数据,是否涉及查看职责范围以外的数据等。


这个是需求处理的内容。需求处理好了,后续工作就游刃有余。

—▼—




数据处理其实就是获取数据、处理数据、校验数据的过程。



获取数据既可以直接从现有数据库表中获取,也可以请数仓根据需求落表再去获取。当然,有时候还可以通过外部数据来获取一些信息辅助分析。


数据处理一般是处理掉一些不需要的无关数据,以及聚合的运算。接下来就要提前先做下数据验证,一个是自身多方角度验证,还可以与需求方协同验证。也可定性验证,就是根据经验或者逻辑推理来验证。或定量验证,就是以数据为支撑,多方交叉验证。


做好数据处理,为下一步的数据分析奠定良好的数据基础。问题也发现了,需求也沟通好了,数据该处理的也处理好了,那就开始做分析吧!

—▼—



做数据分析之前,我们先要想清楚整体的分析框架是什么、采用什么数据分析方法。数据分析方法,是你去组织哪些数据,指导后续整个数据工作的开展。


那么,我们现在来分享数据分析的九大分析方法!



1)漏斗分析法



漏斗分析是数据分析中比较常见的分析模型。采取漏斗直观表示业务从起点到终点的各个环节的转化情况。如图所示的用户支付场景的转化,反应了用户从访问到支付成功各个重要环节的转化情况。也可以对比来看,比如,对比不同产品类型的漏斗转化情况,对比不同用户群体的漏斗转化情况等。


漏斗分析比较简单,重要的是在合适的业务场景中灵活的应用它。


2)AARRR模型



AARRR模型,主要为了探索用户增长,正好对应用户生命周期的5个环节:用户获取、用户激活、用户留存、用户变现、推荐传播。


来想象一个场景,xx公司开发了一款新产品:

第一步:通过地推、广告投放等途径获取用户。

第二步:通过新手引导、物质/精神激励/会员体验等激活刚刚获取到的用户,让用户尽快体验到产品核心功能,get到核心价值。

第三步:赶紧把激活的用户留住啊!短信/push提醒提醒用户该来访问了;让用户办年会员,增加他离开的成本;功能赶紧迭代优化提升用户体验等

第四步:用户既然留下了,那就协助我赚点钱呗!对,到用户变现环节了。给产品增加付费功能,嵌套些广告等。(自身付费,付钱才能用,试用期没了。嵌套付费功能)

第五步: 用户裂变搞起来,让我们的用户给我们拉用户。要相信,来自于用户的好评更有舒服力。当然,产品需要有价值、有共鸣、有趣味用户才愿意推荐传播。


我推荐大家业余看下《增长黑客》这本书,里面对AARRR模型讲的也很细。


3)预测分析



这里主要讲下逻辑回归预测。逻辑回归预测就是根据历史数据,预测未来数据,提前预知,以及时做好预案。回归预测涉及到自变量x,因变量y,直接在excel上先制成折线图,然后再添加拟合线就可以。重点就是该怎么判断拟合是否合理。就看R方,R²越接近1,代表拟合效果越好。


这只是一个比较简单的案例。真正工作中预测会考虑的会比这复杂,比如需要考虑季节性,需要剔除极值异常值等。涉及的知识点较多,更详细的内容请大家去公众号《溜溜笔记说》中“销量预测模型实战”一文查看。


4)关联规则分析



关联规则分析其实就是购物篮分析,就是通过挖掘用户的消费行为数据,探索用户的消费习惯,从而合理搭配商品,提升收益。


主要涉及的知识点有条件概率、支持度、置信度、提升度。

◆支持度:同时包含A和B的事务/所有事务

◆置信度:同时包含A和B的事务/包含A事务

◆提升度:包含A的事务中同时包含B事事务的比例/包含B事务的比例


概念不好理解,来根据案例理解下:

假如近30天共产生了10笔订单(虚构的订单量有点少,不影响计算哈),其中购买了苹果的订单有6笔,购买了香蕉的订单有5笔,同时购买了苹果和香蕉的有3笔。


那么问题来了。

第一个问题,同时购买苹果和香蕉的概率有多大?是3除以10,30%。这是支持度。

第二个问题,购买了苹果的用户会有多大概率再去买香蕉?3除以6,50%。这是支持度。

第三个问题,购买苹果对购买香蕉会产生正向影响还是负向影响或是无影响。这个理解会绕一点。我详细说下。


先看下提升度公式。

拆解下公式就是,购买了苹果的用户再去买香蕉的概率与直接买香蕉的概率进行对比,前者大于后者,则购买苹果会对香蕉产生正向影响,小于后者,则购买苹果会对香蕉产生负向影响,二者相等,则购买苹果会不会对购买香蕉产生任何影响。


这种分析比较适合零售行业的商品组合销售。向刚刚研究的是苹果对香蕉的影响,反过来可以再研究下香蕉对苹果的影响。如果两者研究都是可以产生正向影响的,就可以做捆绑销售。


5)RFM模型



RFM模型主要用来衡量用户价值,做用户分群,比如区分出低价值用户、高价值用户、忠诚用户等用户群体。R:用户最近一次消费距今时间(Recency)F:用户在最近时间段内的消费频次(Frequency)M:用户在最近时间段内的消费金额(Monetary)。


这里用一个比较简单的例子讲下:

先对R、F、M三个值进行分层并赋予权重(以下数据纯属虚构,分层时根据实际情况)。


比如用户最近一次消费距今时间7天以下的打为5分,8-14天的打为4分......以此类推。分数高的表示价值性比较高,分数低的表示价值性比较低。然后对每个用户计算R、F、M值,比如图中,用户“111113”最近一次消费距今时间在7天以下,则R为5,在最近时间段内的消费频次在6-10之间,则F为2,在最近时间段内的消费金额在1001-2000之间,则M为2。再将每个用户的R、F、M值与均值对比(这里就主要用均值来对比,工作中大家根据实际情况来选择是否按照均值),大于均值填充1,小于均值填充0,填充于”按照均值处理后“列中。最后将“按照均值处理后”的数据参照下图模型表,匹配出用户类型。


至此,每个用户的的价值标签就打出来了,可以衡量下哪些是高价值用户,哪些是低价值用户等。


6)帕累托分析



帕累托分析就是“二八法则”。“二八法则”认为80%的财富掌握在20%的人手里,应用到业务中就是,80%的营收在20%的产品里,同理,我们应该花80%的时间内在这20%的产品上。也就是说,宝贵的时间与资源应该用在刀刃上。


如图所示,柱形是销售额,折线是销售额百分比累积。越往后越接近100%。


共15种品类,其中7个品类贡献了80%的销售额,占比46.67%,也就是说46.67%的商品为公司带来了80%的销售额,并不符合二八定律,该公司并没有强势产品。


那么我们80%的精力就要分散运营这46.67%的产品才能为公司带来80%的销售额。


通过该模型可分析出:

◆我们80%的精力都花在哪些产品上了

◆20%的头部产品是否带来了大额营收


7)留存分析



留存分析的指标是留存率,留存率指某日用户数在第N日仍启动该App的用户比例,留存分析即分析用户随时间变化的活跃情况。获客成本比较高,提高用户留存的重要性不言而喻。


从时间维度划分:常见的的有:次日留存、3日留存、7日留存、30日留存、周留存、月留存。

从用户维度划分:常见的的有:新用户留存、活跃留存。


来看一个案例:

该表留存率:(某日新增的用户中,在第N天还进行登录的用户数)/ 该日新增用户数。

格中以8月6日注册用户的次留(71%)为起始点,8月1日注册用户的7留(34%)为结束点,二者形成对角线,纵向对比数据,颜色颜色部分留存率都比较高。首先需要确认8月7日这天运营是否做了动作?

为什么要怀疑8月7日?


因为8月6日的次留是8月7日,8月5日的次留也是8月7日,以此类推。所以初步猜测是否8月7日有促销动作?


再看一下次留这列,8月9日的次留明显低于一般水平。警惕羊毛党。有人会新用户注册时候利用新用户福利来薅羊毛,薅完羊毛就撤,并不会留存下来。


应用场景举例:
◆评估迭代与优化的效果。砍掉留存率低的产品功能,进行迭代优化。
◆判断用户忠诚度,一周下来用户对产品基本已有完整的体验。一整套流程体验下来,继续访问的用户可判断为潜在忠诚用户。


涉及的知识点较多,更详细的内容请大家去公众号《溜溜笔记说》中“留存分析3500字干货,方法+案例+参考代码”一文查看。

8)用户生命周期价值分析


用户生命周期就是LTV,即用户生命周期总价值,用于衡量用户对产品产生的价值。

LTV=LT*ARPU即:用户的平均生命周期*单个用户的平均收益;
LT:用户的平均生命周期,是用户首次访问至末次访问期间的活跃天数。比如LTn就代表用户的生命周期是n天,其实就是活跃n天。LTn=1+次日留存率+3日留存率+...+n日留存率;

那么LT为什么等于1+留存率之和呢?
举个例子,该产品在12月2日新增了100个人访问,极端点,12月3日的时候这100个人全部又访问了,12月4日这100个人全部再次访问了,那么这100个人平均每个人访问的天数为:(100+100+100)/100=3天,即平均每个人访问了3天,这个3就是用户生命周期LT。

将以上极端的访问留存数据换成正常的留存数据,12月2日新增了100个人访问,12月3日的时候这100个人中还有90个人访问,12月4日的时候这100个人中还有70个人访问。

那么,用户生命周期就是(100+90+70)/100=2.6天,其实也是1+90/100+70/100=1+次日留存率+3日留存率=2.6天。这就很好理解了用户生命周期LT为什么是留存率之和了吧?

LT计算出来再乘以ARPU就是LTV了。这快内容讲起来会比较多,也比较深,涉及的知识点较多,更详细的内容请大家去公众号《溜溜笔记说》中“如何做好用户生命周期价值分析(LTV)”一文查看。

9)波士顿矩阵


波士顿矩阵用于分析公司的产品结构,发现痛点,为是否需要及时调整战略目标,以及判断产品的资源分配是否合理提供数据支持。

大家看下这个图 它主要包括这4个模块:
◆右上角明星产品,高增速高份额,双高。宜抓住机会,扩大投资,提升竞争优势。
◆右下角金牛产品,高份额低增速,明星产品再继续发展下去就会成为金牛了,成熟了。稳定发展即可,维护好当前市场。
◆左上角问题产品,高增速低份额。一般属于没开拓市场,营销不给力。
◆左下角瘦狗产品,低增速低份额。基本可以淘汰了,将此资源转而投资给其他更有利的产品。

波士顿矩阵分析,既简单又直观,协助我们分析产品结构,及时调整产品策略。

—▼—



数据分析结束之后,就要将数据展现出来了,也就是数据可视化。将海量数据图形化,复杂数据直观化。


主要作用为:

◆便于让业务人员查询所需内容;

◆便于管理层迅速抓取到重要信息;

◆公司门面,传达了公司数据分析方面对外的第一印象,尤其对乙方而言;

◆推动决策,帮助使用方节省更多数据清洗&处理的时间,将更多时间放于分析与决策制定。



这里我重点提一点,可视化的两种极端。


一种是过于粗糙。我见过看板做的简直惨不忍睹的,排版不整齐,颜色大红配大绿,视觉上很有冲击感。而且,分析师忍耐力也很强,需求方不反馈就不改。数据可视化,最起码保证一种舒适感,能让人迅速get到需要的数据信息。可以不注重美观,但也不能粗糙过了头。


另一种是过于炫技。知道我的可能已经见过我之前设计的tableau作品了,确实有炫技的成分在立面。但是也只是业余爱好玩玩,真正工作中基本用不到这么酷炫的图形。除非,公司需要一种酷炫的dashboard去谈商务搞营销。不然,还是数据为主。




—▼—



总结

以上就是本次分享的全部内容!


1、数据分析流程分成了五大块阶段: 发现问题→需求处理→数据处理→数据分析→数据展现。


2、九大数据分析方法:漏斗分析法、AARRR模型预测分析关联规则分析RFM模型帕累托分析留存分析用户生命周期价值分析波士顿矩阵。


各个数据分析方法其主要应用场景如下:

▶漏斗分析法:用户支付场景、新用户注册场景、渠道分析等;


▶AARRR模型:探索某产品是怎样培养忠实用户的、探索培养用户行为习惯的方式等;


▶预测分析:销量预测、DAU预测等;


▶关联规则分析:零售行业商品捆绑促销、商品推荐(比如给购买了苹果的用户推荐香蕉)等;


▶RFM模型:找出push推送/福利券等方式唤醒的对象、对不同用户群体采取不同运营策略等;


▶帕累托分析:我们80%的精力都花在了哪些产品上、探索20%的头部产品是否带来了大额营收等;


▶留存分析:评估迭代与优化的效果。砍掉留存率低的产品功能,进行迭代优化。判断用户忠诚度,一周下来用户对产品基本已有完整的体验。一整套流程体验下来,继续访问的用户可判断为潜在忠诚用户等;


▶用户生命周期价值分析用于衡量用户对产品产生的价值等;


▶波士顿矩阵:衡量产品结构、辅助评估产品的资源配置等;

总之数据分析涉及很多知识点,不是一次分享能全部了解的,而很少有一种系统化的流程来参考,本次分享正好梳理从0到1构架数据分析整体流程框架,但数据分析不仅仅是一个职位,一个工作,而是一个思考的方式,未来职场人的一个底层能力。


最后,相信大家通过不断的学习和实操,认识到产品思维在数据分析中的应用以及价值所在。学贵在行,需要我们在以后的学习工作中不断地积累经验掌握工具,学以致用。能站在多方角度,发现问题,分析问题,解决问题,总结问题。

小飞象木木自由
分享到朋友圈
收藏
收藏
评分

综合评分:

我的评分
Xinstall 15天会员特权
Xinstall是专业的数据分析服务商,帮企业追踪渠道安装来源、裂变拉新统计、广告流量指导等,广泛应用于广告效果统计、APP地推与CPS/CPA归属统计等方面。
20羽毛
立即兑换
一书一课30天会员体验卡
领30天VIP会员,110+门职场大课,250+本精读好书免费学!助你提升职场力!
20羽毛
立即兑换
顺丰同城急送全国通用20元优惠券
顺丰同城急送是顺丰推出的平均1小时送全城的即时快送服务,专业安全,准时送达!
30羽毛
立即兑换
小飞象木木自由
小飞象木木自由
发表文章55
互联网从业6年,公众号木木自由:专注数据分析实战案例经验以及方法论的总结!
确认要消耗 羽毛购买
数据分析整体框架之落地全流程讲解吗?
考虑一下
很遗憾,羽毛不足
我知道了

我们致力于提供一个高质量内容的交流平台。为落实国家互联网信息办公室“依法管网、依法办网、依法上网”的要求,为完善跟帖评论自律管理,为了保护用户创造的内容、维护开放、真实、专业的平台氛围,我们团队将依据本公约中的条款对注册用户和发布在本平台的内容进行管理。平台鼓励用户创作、发布优质内容,同时也将采取必要措施管理违法、侵权或有其他不良影响的网络信息。


一、根据《网络信息内容生态治理规定》《中华人民共和国未成年人保护法》等法律法规,对以下违法、不良信息或存在危害的行为进行处理。
1. 违反法律法规的信息,主要表现为:
    1)反对宪法所确定的基本原则;
    2)危害国家安全,泄露国家秘密,颠覆国家政权,破坏国家统一,损害国家荣誉和利益;
    3)侮辱、滥用英烈形象,歪曲、丑化、亵渎、否定英雄烈士事迹和精神,以侮辱、诽谤或者其他方式侵害英雄烈士的姓名、肖像、名誉、荣誉;
    4)宣扬恐怖主义、极端主义或者煽动实施恐怖活动、极端主义活动;
    5)煽动民族仇恨、民族歧视,破坏民族团结;
    6)破坏国家宗教政策,宣扬邪教和封建迷信;
    7)散布谣言,扰乱社会秩序,破坏社会稳定;
    8)宣扬淫秽、色情、赌博、暴力、凶杀、恐怖或者教唆犯罪;
    9)煽动非法集会、结社、游行、示威、聚众扰乱社会秩序;
    10)侮辱或者诽谤他人,侵害他人名誉、隐私和其他合法权益;
    11)通过网络以文字、图片、音视频等形式,对未成年人实施侮辱、诽谤、威胁或者恶意损害未成年人形象进行网络欺凌的;
    12)危害未成年人身心健康的;
    13)含有法律、行政法规禁止的其他内容;


2. 不友善:不尊重用户及其所贡献内容的信息或行为。主要表现为:
    1)轻蔑:贬低、轻视他人及其劳动成果;
    2)诽谤:捏造、散布虚假事实,损害他人名誉;
    3)嘲讽:以比喻、夸张、侮辱性的手法对他人或其行为进行揭露或描述,以此来激怒他人;
    4)挑衅:以不友好的方式激怒他人,意图使对方对自己的言论作出回应,蓄意制造事端;
    5)羞辱:贬低他人的能力、行为、生理或身份特征,让对方难堪;
    6)谩骂:以不文明的语言对他人进行负面评价;
    7)歧视:煽动人群歧视、地域歧视等,针对他人的民族、种族、宗教、性取向、性别、年龄、地域、生理特征等身份或者归类的攻击;
    8)威胁:许诺以不良的后果来迫使他人服从自己的意志;


3. 发布垃圾广告信息:以推广曝光为目的,发布影响用户体验、扰乱本网站秩序的内容,或进行相关行为。主要表现为:
    1)多次发布包含售卖产品、提供服务、宣传推广内容的垃圾广告。包括但不限于以下几种形式:
    2)单个帐号多次发布包含垃圾广告的内容;
    3)多个广告帐号互相配合发布、传播包含垃圾广告的内容;
    4)多次发布包含欺骗性外链的内容,如未注明的淘宝客链接、跳转网站等,诱骗用户点击链接
    5)发布大量包含推广链接、产品、品牌等内容获取搜索引擎中的不正当曝光;
    6)购买或出售帐号之间虚假地互动,发布干扰网站秩序的推广内容及相关交易。
    7)发布包含欺骗性的恶意营销内容,如通过伪造经历、冒充他人等方式进行恶意营销;
    8)使用特殊符号、图片等方式规避垃圾广告内容审核的广告内容。


4. 色情低俗信息,主要表现为:
    1)包含自己或他人性经验的细节描述或露骨的感受描述;
    2)涉及色情段子、两性笑话的低俗内容;
    3)配图、头图中包含庸俗或挑逗性图片的内容;
    4)带有性暗示、性挑逗等易使人产生性联想;
    5)展现血腥、惊悚、残忍等致人身心不适;
    6)炒作绯闻、丑闻、劣迹等;
    7)宣扬低俗、庸俗、媚俗内容。


5. 不实信息,主要表现为:
    1)可能存在事实性错误或者造谣等内容;
    2)存在事实夸大、伪造虚假经历等误导他人的内容;
    3)伪造身份、冒充他人,通过头像、用户名等个人信息暗示自己具有特定身份,或与特定机构或个人存在关联。


6. 传播封建迷信,主要表现为:
    1)找人算命、测字、占卜、解梦、化解厄运、使用迷信方式治病;
    2)求推荐算命看相大师;
    3)针对具体风水等问题进行求助或咨询;
    4)问自己或他人的八字、六爻、星盘、手相、面相、五行缺失,包括通过占卜方法问婚姻、前程、运势,东西宠物丢了能不能找回、取名改名等;


7. 文章标题党,主要表现为:
    1)以各种夸张、猎奇、不合常理的表现手法等行为来诱导用户;
    2)内容与标题之间存在严重不实或者原意扭曲;
    3)使用夸张标题,内容与标题严重不符的。


8.「饭圈」乱象行为,主要表现为:
    1)诱导未成年人应援集资、高额消费、投票打榜
    2)粉丝互撕谩骂、拉踩引战、造谣攻击、人肉搜索、侵犯隐私
    3)鼓动「饭圈」粉丝攀比炫富、奢靡享乐等行为
    4)以号召粉丝、雇用网络水军、「养号」形式刷量控评等行为
    5)通过「蹭热点」、制造话题等形式干扰舆论,影响传播秩序


9. 其他危害行为或内容,主要表现为:
    1)可能引发未成年人模仿不安全行为和违反社会公德行为、诱导未成年人不良嗜好影响未成年人身心健康的;
    2)不当评述自然灾害、重大事故等灾难的;
    3)美化、粉饰侵略战争行为的;
    4)法律、行政法规禁止,或可能对网络生态造成不良影响的其他内容。


二、违规处罚
本网站通过主动发现和接受用户举报两种方式收集违规行为信息。所有有意的降低内容质量、伤害平台氛围及欺凌未成年人或危害未成年人身心健康的行为都是不能容忍的。
当一个用户发布违规内容时,本网站将依据相关用户违规情节严重程度,对帐号进行禁言 1 天、7 天、15 天直至永久禁言或封停账号的处罚。当涉及欺凌未成年人、危害未成年人身心健康、通过作弊手段注册、使用帐号,或者滥用多个帐号发布违规内容时,本网站将加重处罚。


三、申诉
随着平台管理经验的不断丰富,本网站出于维护本网站氛围和秩序的目的,将不断完善本公约。
如果本网站用户对本网站基于本公约规定做出的处理有异议,可以通过「建议反馈」功能向本网站进行反馈。
(规则的最终解释权归属本网站所有)

我知道了
恭喜你~答对了
+5羽毛
下一次认真读哦
成功推荐给其他人
+ 10羽毛
评论成功且进入审核!审核通过后,您将获得10羽毛的奖励。分享本文章给好友阅读最高再得15羽毛~
(羽毛可至 "羽毛精选" 兑换礼品)
好友微信扫一扫
复制链接