很可惜 T 。T 您现在还不是作者身份,不能自主发稿哦~
如有投稿需求,请把文章发送到邮箱tougao@appcpx.com,一经录用会有专人和您联系
咨询如何成为春羽作者请联系:鸟哥笔记小羽毛(ngbjxym)
从2012年大数据概念兴起至今,毫无疑问数据已逐渐成为全世界最重要的生产资料。著名咨询公司麦肯锡几年前曾对全球多家知名且快速增长的企业进行分析,发现这些公司的一个重要共同点就是数据能力很强(包括数据基建、分析能力、数据驱动理念),且能够充分发挥数据的价值,赋能企业增长。那么数据的价值究竟是什么?
首先从人与世界的关系角度,个人认为数据是客观世界的映射,是在某种方法之下对实体的数字化表达。可以帮助人类看清、探索世界,发现世界运行的规律,辅助指导人类优化世界的方向。
其次从资源角度,个人认为数据就像石油,是最基本的生产资料和基础建设必备资源,用于支撑互联网、IoT等更先进的工业模式,从而驱动人类的进化(Evolution,内卷的反义词)。
最后从商业角度,个人认为数据的价值应该体现在帮助企业提高收入、提高效率、降低成本、降低风险。
数据虽然价值巨大,但就像石油只有被加工利用才能体现价值一样,只有经过必要处理、分析挖掘后,才能真正体现价值。其中分析可以认为是最重要最有价值的环节之一。
由于本文不是数据分析科普文,关于定义、方法论、方法就不再一一赘述了,相信很多读者都有所了解,不了解的可以百度一下。关于数据分析的价值层级,在去年发表的数据算法赋能京东PLUS会员增长—方法论与实战一文中“数据分析”章节有详细介绍,感兴趣的读者可自行阅读参考。
常规的数据分析流程,主要是依靠数据分析师。
1. 通过写取数代码取到数据
2. 在Excel等轻量BI工具中透视分析
3. 数据分析报告这样的范式进行数据分析
从存在即合理角度看,这样的流程肯定有存在的意义,但个人一直觉得这种范式有些问题和局限。
1. 决策效率低:首先提数->BI工具离线分析->数据报告ppt流程不短,且每个环节所花费的人力都不小:提数一般是hive,跑数慢;BI工具如果不熟练还需要学习或熟悉,且透视表每次都可能需要重新搭建;ppt用于汇报的话要求往往不低,一般情况至少一周。整体上分析的绝对成本以及边际成本都不低,且决策会因分析过程冗长,造成滞后性。在商场如战场的时代,决策的及时性和效率对企业的重要性不言而喻。在你写ppt的时候,可能竞争对手已经完成多轮分析并开始进行新战略战术的验证了。
2. 边际成本高:其次这种分析范式的数据往往只是某个数据片段,天然无法自动长期观测,下次同样的分析思路,还需要重新来过,浪费不必要的时间人力成本。
3. 决策风险高:个人认为企业决策依赖某位,或某些数据分析师的洞察和结论,风险是非常高的。因为毕竟个人的认知都有局限性,有可能因为认知偏差或错误导致分析结论与实际情况不符,进而影响关键重要战略决策!
鉴于上述分析,笔者认为需要通过产品化的方式将数据分析的过程、结论以产品或工具形式输出,形成能力赋能更多人去使用、去决策,实现真正意义上的数据驱动与集体智慧相结合!
像任何概念一样,随处可以搜到不同版本的定义。本人目前比较认可喜欢的版本是:“数据产品是一种降低用户使用数据的门槛,并发挥和提高数据价值的产品类型,与之对应的有用户产品和商家产品”。之所以认可是因为定义非常清晰且直击核心本质,不玄学不八股说人话,同时也与本人的理解非常一致。
笔者首次接触数据产品是几年前加入SAS(不是SaaS)公司后。数据领域的从业者应该都听说过SAS(Statistical Analysis System),这是一家专注在数据分析、数据挖掘、数据科学产品领域的开山鼻祖公司之一。尽管在互联网行业使用不多,但在金融、医药领域仍然是公认权威的数据产品,可能没有之一。从某种意义上我要感谢在SAS的这段经历,让我在很早有机会接触到数据产品。
一个完整的数据产品通常由采集清洗、计算管理、分析展示和挖掘应用四个模块组成
1. 采集清洗:采集指的是产品通过各种技术手段,将现实世界的信息线上化之后,再传输到企业的服务器和数据库中;清洗是指对采集到的信息中存在的数据缺失、冗余、错误等情况进行整理和优化,以确保输入的信息尽可能完整准确。这个步骤与常说的ETL(抽取、转化、加载)很相似,属于“脏活累活”,但对数据分析以及决策至关重要。
2. 计算管理:第一步采集清洗后的信息其实还不能体现太大的价值,因为这些信息并不能被直接用来扩大对客观世界的认知,需要根据不同业务场景和需求进行汇总计算才能成为真正有价值的数据。
3. 分析展示:此时需要通过模块化的数据分析方法、数据可视化组件对上述数据进行解析与展示,以最终实现对客观世界矛盾的描述探索、诊断归因、预报预测,并形成优化决策建议,赋能商业
4. 挖掘应用:对于需要使用到算法模型的场景(如搜索、推荐、反欺诈等),也可以将算法模型进行模块化、产品化,将算法能力赋能给非算法人员,实现算法价值的放大
根据产品的使用对象可以将数据产品分成两大类:商用数据产品和企业数据产品。
这类数据产品由企业或个人开发,提供给外部企业免费或付费使用。在发达国家这方面起步较早且分类精细。国内的话因为市场成熟度相对低,且由于商业环境等问题(盗版软件),这个领域尚处于起步阶段。以下是常见8类商用数据产品全景介绍:
这类数据产品往往有企业自建自用,主要目的是降低员工使用数据的门槛,辅助人员作出决策和提高业务效率。根据内部定位,企业数据产品可再细分为应用型和平台型。
平台型数据产品:为企业内部各种数据应用提供底层系统支持。
上述商业数据产品中不乏这类产品。以目前业内名气较大的GrowingIO相关产品为例,个人理解其本质是通过接入企业底层数据源,通过无埋点等技术实现对企业数据的全方位打通,得以进行人、货、场等多视角数据分析,赋能业务方实现类似精准营销、精细化运营场景。京东中台据我了解也有较完善的平台级数据产品,这里简要介绍本部门用的最多的一款敏捷BI产品,EasyBI(原京动力)。
在我看来这是一个类似Looker的敏捷BI产品,可以从数据源接入->数据ETL->可视化看板创建->自由探索分析->报表订阅输出 全流程完成敏捷数据分析,大幅提升了数据分析效率。该产品是本人在京东用的最多,也是认为最有价值的数据产品之一!
应用型数据产品:企业数据应用,更多是结合业务场景设计对应的共建或产品来提高效率。
场景可以是数据化运营、可以是智慧营销、可以是智能分析。笔者所在部门做的数据产品更多属于这一类,在后文会单独介绍
这里敲下黑板,因为是本文的核心思想。
1. 放大分析的价值:传统数据分析范式中往往依靠一两个分析师基于某时间窗口的数据,针对某个主题进行静态分析,决策也只能基于该次分析做出。而通过数据产品,可以让所有使用者在任意时刻对任意窗口数据进行分析和决策,基于集体智慧的分布式数据驱动决策,效率和决策产出要远远大于前者!对于企业来说好处不言而喻。
2. 提高分析效率:传统分析范式不仅时间周期长,且一次分析往往只能得到非常有限的洞察和决策;数据产品范式每次分析的效率会有巨大的提升。同样交付周期内,可能会得到无数个分析洞察结论,产生多个有效决策(蝴蝶效应)
3. 沉淀分析能力:作为研发团队,能力沉淀是领导们非常重视的事情。对于什么是能力沉淀,本人最近也有一些思考,那就是将工作内容以工具、产品形式沉淀;将工作经验以文档、文章形式输出。不一定全面正确,但自认为相对清晰。那么在我看来数据产品应该是数据分析能力的最佳沉淀方式之一。
4. 降低决策风险:俗话讲:“三个臭皮匠赛过诸葛亮”。这个比喻听上去不太高大上,但背后的哲理我认为还是可以用到这里。通过群策群力、集体智慧不仅可以有效增加输入,更可以规避因个人的认知偏差或错误导致分析结论与实际情况不符,进而影响关键重要决策!
5. 降低分析成本:传统分析范式交付周期比较长,一般从数据提取->离线分析->ppt报告制作至少要一两周时间;而数据产品一旦建好,数据源一旦接入正确,数据模型足够完善,每次分析往往只需要几分到几小时。且无需重复提数,边际成本几乎为零!
6. 降低分析门槛:传统分析范式开展工作门槛较高,但对于企业如果想形成数据驱动的文化,提高数据驱动效能,应该让更多的人能够参与到数据分析当中。而数据产品恰好可以解决这个问题。一方面数据产品定义中就明确说明,是为了降低数据分析门槛,因此正常情况下理应以“小白”用户视角去设计产品,考虑用户体验、使用便捷性,易用性;另一方面(以可视化类产品为例)从认知心理学角度,可视化图表大幅提高了信息密度,通过颜色、形状等视觉化组件,快速将数据所包含的信息呈现给用户,大幅降低了认知成本。
那么好的数据产品应该具有哪些特点?总体上至少包括4个维度:
1. 准确:这是数据产品的根本,是最重要的评价维度。因为一旦数据不准确,任何结论、应用、决策都可能是错的,成为空中楼阁。因此需要前期在数据源质量、指标计算口径上用心把控,确保精确。
2. 及时:无论是实时分析还是离线分析,都需要根据应用场景确保在必要的数据更新节点展示期望的数据。如果刷新时看不到数据或不是期望的时间窗口,使用体验会大打折扣。
3. 全面:由于受众较广,需要尽可能覆盖相关业务的全部核心指标及分析维度,实现“丰俭由人”,“一石多鸟”。
4. 易用:首先在产品设计时要充分考虑不同用户的使用经验和习惯,尽可能简单、步骤少、有引导,让用户用的“爽”,不要“反人性”;同时要定期对新老用户进行访谈或问卷调研,及时了解用户的使用反馈,及时优化,不断迭代。
本节用少量篇幅介绍个人在数据产品领域的主要实战经历。
本人几年前以数据分析师入职京东。当时因为没有发现可用的可视化产品,只能通过Excel对不同列的数据进行原始的可视化监控。
现在看上去可能有点low,但毕竟也算一种可视化数据看板的雏形。令我印象非常深的是,当时同组的小伙伴看到后表示眼前一亮。当时也坚定了数据看板化的方向。
JA(京东分析师)产品出现后,尽管可视化功能不是非常强大,但还是做出了部门内第一个可视化日报。问题定位、数据监控效率有了质的提升!
大约两年前京东中台开发了一款敏捷BI工具,EasyBI(原京动力)。我很快成为重度忠实用户。两个月后搭建了部门内第一个(也是第一个PLUS业务,省钱攻略)EasyBI版本可视化数据分析看板,成为了敏捷BI的重要里程碑。
当时的产品同学看到后有如获至宝的感觉,强烈要求分享给PLUS全部业务方。也是从那时起,掀起了PLUS数据驱动精细化运营的浪潮。时至今日PLUS业务分析看板涵盖用户增长、货品运营、流量监控、营销活动、损益分析5大主题共计数十个可视化分析看板。
随着看板数量增加,使用看板的人数增加,基于EasyBI默认的看板管理模式遇到了瓶颈,看板内容及用户维护成本激增。为了解决该痛点,我想到能否通过类似门户网站的方式,让用户实现一站式访问目标看板,而无需维护看板名称-链接映射关系。经过一番设计,最终诞生了第一个EasyBI版可交互分析的看板门户产品,SMART-A。以下截图数据已脱敏。
坦诚讲,这个产品本身并不复杂,但确实可以让用户更快、更便捷访问看板,进一步提高数据分析效率和体验。EasyBI团队也在这个产品启发下,开发了一套通用看板门户搭建平台,方便更多部门搭建自己的看板门户。这个产品也获得了PLUS业务方真实的正面反馈。
“通过该平台及时获取push发送量级、点击率等核心指标是否正常”-用户增长组
“通过平台内不用消息的点击率,定位需优化的push类型,方便业务及时发现问题进行迭代”-会籍权益组
“相比日推数据,维度更多、指标更多,看数不用临时提需,可通过可视化快速看清数据”-产品组
目前PLUS业务负责人以及全部业务侧、产品侧、部分研发侧、部分测试侧同事都已成为该产品的用户。
此外用户还包括首页资源侧、黄金流程、消息推送等部门同事。
未来会基于用户真实负反馈不断完善产品,解决更多的“痛点”、“痒点”,制造更多的“爽点”。
数据产品作为大数据时代的重要产品形态,不仅可以规避传统数据分析范式的弊端,同时可以:
放大分析的价值;
提高分析效率;
沉淀分析能力;
降低决策风险;
降低分析成本;
降低分析门槛。
未来在国内市场的潜在市场和增长空间依然很大,我很看好!
参考资料:《数据产品经理-实战进阶》
-END-
本文为作者独立观点,不代表鸟哥笔记立场,未经允许不得转载。
《鸟哥笔记版权及免责申明》 如对文章、图片、字体等版权有疑问,请点击 反馈举报
Powered by QINGMOB PTE. LTD. © 2010-2022 上海青墨信息科技有限公司 沪ICP备2021034055号-6
我们致力于提供一个高质量内容的交流平台。为落实国家互联网信息办公室“依法管网、依法办网、依法上网”的要求,为完善跟帖评论自律管理,为了保护用户创造的内容、维护开放、真实、专业的平台氛围,我们团队将依据本公约中的条款对注册用户和发布在本平台的内容进行管理。平台鼓励用户创作、发布优质内容,同时也将采取必要措施管理违法、侵权或有其他不良影响的网络信息。
一、根据《网络信息内容生态治理规定》《中华人民共和国未成年人保护法》等法律法规,对以下违法、不良信息或存在危害的行为进行处理。
1. 违反法律法规的信息,主要表现为:
1)反对宪法所确定的基本原则;
2)危害国家安全,泄露国家秘密,颠覆国家政权,破坏国家统一,损害国家荣誉和利益;
3)侮辱、滥用英烈形象,歪曲、丑化、亵渎、否定英雄烈士事迹和精神,以侮辱、诽谤或者其他方式侵害英雄烈士的姓名、肖像、名誉、荣誉;
4)宣扬恐怖主义、极端主义或者煽动实施恐怖活动、极端主义活动;
5)煽动民族仇恨、民族歧视,破坏民族团结;
6)破坏国家宗教政策,宣扬邪教和封建迷信;
7)散布谣言,扰乱社会秩序,破坏社会稳定;
8)宣扬淫秽、色情、赌博、暴力、凶杀、恐怖或者教唆犯罪;
9)煽动非法集会、结社、游行、示威、聚众扰乱社会秩序;
10)侮辱或者诽谤他人,侵害他人名誉、隐私和其他合法权益;
11)通过网络以文字、图片、音视频等形式,对未成年人实施侮辱、诽谤、威胁或者恶意损害未成年人形象进行网络欺凌的;
12)危害未成年人身心健康的;
13)含有法律、行政法规禁止的其他内容;
2. 不友善:不尊重用户及其所贡献内容的信息或行为。主要表现为:
1)轻蔑:贬低、轻视他人及其劳动成果;
2)诽谤:捏造、散布虚假事实,损害他人名誉;
3)嘲讽:以比喻、夸张、侮辱性的手法对他人或其行为进行揭露或描述,以此来激怒他人;
4)挑衅:以不友好的方式激怒他人,意图使对方对自己的言论作出回应,蓄意制造事端;
5)羞辱:贬低他人的能力、行为、生理或身份特征,让对方难堪;
6)谩骂:以不文明的语言对他人进行负面评价;
7)歧视:煽动人群歧视、地域歧视等,针对他人的民族、种族、宗教、性取向、性别、年龄、地域、生理特征等身份或者归类的攻击;
8)威胁:许诺以不良的后果来迫使他人服从自己的意志;
3. 发布垃圾广告信息:以推广曝光为目的,发布影响用户体验、扰乱本网站秩序的内容,或进行相关行为。主要表现为:
1)多次发布包含售卖产品、提供服务、宣传推广内容的垃圾广告。包括但不限于以下几种形式:
2)单个帐号多次发布包含垃圾广告的内容;
3)多个广告帐号互相配合发布、传播包含垃圾广告的内容;
4)多次发布包含欺骗性外链的内容,如未注明的淘宝客链接、跳转网站等,诱骗用户点击链接
5)发布大量包含推广链接、产品、品牌等内容获取搜索引擎中的不正当曝光;
6)购买或出售帐号之间虚假地互动,发布干扰网站秩序的推广内容及相关交易。
7)发布包含欺骗性的恶意营销内容,如通过伪造经历、冒充他人等方式进行恶意营销;
8)使用特殊符号、图片等方式规避垃圾广告内容审核的广告内容。
4. 色情低俗信息,主要表现为:
1)包含自己或他人性经验的细节描述或露骨的感受描述;
2)涉及色情段子、两性笑话的低俗内容;
3)配图、头图中包含庸俗或挑逗性图片的内容;
4)带有性暗示、性挑逗等易使人产生性联想;
5)展现血腥、惊悚、残忍等致人身心不适;
6)炒作绯闻、丑闻、劣迹等;
7)宣扬低俗、庸俗、媚俗内容。
5. 不实信息,主要表现为:
1)可能存在事实性错误或者造谣等内容;
2)存在事实夸大、伪造虚假经历等误导他人的内容;
3)伪造身份、冒充他人,通过头像、用户名等个人信息暗示自己具有特定身份,或与特定机构或个人存在关联。
6. 传播封建迷信,主要表现为:
1)找人算命、测字、占卜、解梦、化解厄运、使用迷信方式治病;
2)求推荐算命看相大师;
3)针对具体风水等问题进行求助或咨询;
4)问自己或他人的八字、六爻、星盘、手相、面相、五行缺失,包括通过占卜方法问婚姻、前程、运势,东西宠物丢了能不能找回、取名改名等;
7. 文章标题党,主要表现为:
1)以各种夸张、猎奇、不合常理的表现手法等行为来诱导用户;
2)内容与标题之间存在严重不实或者原意扭曲;
3)使用夸张标题,内容与标题严重不符的。
8.「饭圈」乱象行为,主要表现为:
1)诱导未成年人应援集资、高额消费、投票打榜
2)粉丝互撕谩骂、拉踩引战、造谣攻击、人肉搜索、侵犯隐私
3)鼓动「饭圈」粉丝攀比炫富、奢靡享乐等行为
4)以号召粉丝、雇用网络水军、「养号」形式刷量控评等行为
5)通过「蹭热点」、制造话题等形式干扰舆论,影响传播秩序
9. 其他危害行为或内容,主要表现为:
1)可能引发未成年人模仿不安全行为和违反社会公德行为、诱导未成年人不良嗜好影响未成年人身心健康的;
2)不当评述自然灾害、重大事故等灾难的;
3)美化、粉饰侵略战争行为的;
4)法律、行政法规禁止,或可能对网络生态造成不良影响的其他内容。
二、违规处罚
本网站通过主动发现和接受用户举报两种方式收集违规行为信息。所有有意的降低内容质量、伤害平台氛围及欺凌未成年人或危害未成年人身心健康的行为都是不能容忍的。
当一个用户发布违规内容时,本网站将依据相关用户违规情节严重程度,对帐号进行禁言 1 天、7 天、15 天直至永久禁言或封停账号的处罚。当涉及欺凌未成年人、危害未成年人身心健康、通过作弊手段注册、使用帐号,或者滥用多个帐号发布违规内容时,本网站将加重处罚。
三、申诉
随着平台管理经验的不断丰富,本网站出于维护本网站氛围和秩序的目的,将不断完善本公约。
如果本网站用户对本网站基于本公约规定做出的处理有异议,可以通过「建议反馈」功能向本网站进行反馈。
(规则的最终解释权归属本网站所有)