APP推广合作
联系“鸟哥笔记小乔”
编码图像tokenizer-从VQGAN到MAGVIT
2024-02-27 09:47:25

来源:Agent的潜意识

我们在探讨patches的方方面面。不过patches有一个核心bug:就是他的分片是简单切割的,比如一张图片切成9份,那么有可能,一个具象的语义信息,例如一个人脸,可能被切割在了四份里面,每一份都只是人脸的一部分,这样的特征提取器表达力肯定是不完整的。

在NLP中,有一个专门的分词器tokenizer。例如可以把满腹经纶这样的成语分为一个词。如果图像要套用NLP里面的tokens的概念。这样的图像语义分词器就显得非常重要。

业界对这块也研究了很多。今天我们这条线盘一盘。目前我们整个系列还在盘图像tokens这个概念,他只是整个知识树的一个根,后面我们再整体全貌看如何构建一个视频生成网络模型的pipeline。

今天分享三块:

1、VQVAE Neural Discrete Representation Learning。如何将图片编码为离散隐变量。

论文:

https://arxiv.org/abs/1711.00937。这个是(google deepmind 2017 NIPS)

代码:https://github.com/karpathy/deep-vector-quantization

2、VQGAN Taming Transformers for High-Resolution Image Synthesis。他的核心思想是把VQVAE里面的CNN换成transformer。

论文:https://arxiv.org/pdf/2012.09841.pdf。这个是CVPR2021 oral。德国人的。

代码:https://git.io/JnyvK.

3、MAGIT - Masked Generative Video Transformer。这个论文是在VQGAN的基础上首次合成视频。

论文: https://arxiv.org/abs/2212.05199

Project : https://MAGVIT.cs.cmu.edu/

代码: https://github.com/google-research/magvit

一、VQVAE 图像的离线隐空间编码器

这是一篇高被引奠基性的文章。后面很多论文都在这个论文基础上展开。他的核心思想其实也很简单。附上论文原图。更加真实理解论文本意。

Sora技术3:编码图像tokenizer-从VQ- VAE、VQGAN到MAGVIT

整个pipeline在上图中。我们详细讲解一下整个过程。整个图从左往右看,虚黑线隔开的右半角部分是讲如何最近邻搜索离散化的。一只小狗的原始图片,通过一个CNN编码器网络,转变为一个隐变量绿色立方体空间Ze;由于是神经网络非线性变化,Ze肯定是一个连续变量空间矩阵,这时候,通过一个特征空间查找表E,将Ze里面的连续值,通过最近邻算法查找到最相近的点ei,从而将绿立方体变成了浅紫色立方体特征空间Zq。然后对这个浅紫色特征空间进行CNN的解码器变换,变换出一个真实图像出来。如果编码器学的好,就说明这个特征表示Zq非常有效。我们就拿这个Zq来表示这个图片了。由于Zq是离散值,因此就是一个图像的离散特征表示。红线表示的是梯度传播的时候直接跳过离散化查找表。

整个loss共三项。

Sora技术3:编码图像tokenizer-从VQ- VAE、VQGAN到MAGVIT

第一项很简单,x是输入的图像,Zq(x)是解码器输出图像,这个就是一个重建loss,看输入的原始图像和解码器输出的图像之间的loss。后两项看起来比较复杂。我通俗易懂的给大家解释下原理:这两个loss的目的是让离散化查找表embedding space 中的节点更内聚的。所谓内聚,就是,以这张图为例,你可以把狗的耳朵当成一个离散值节点,那么两个狗耳朵就不需要两个离散化节点了。这样就提升了离散节点的表达力。他就是NL P里面词表的概念。

二、VQGAN : VQVAE的改进版

这篇论文有很多的博客在讲。但很多人都讲错了。VQGAN他的编码器和解码器都是CNN,并没有变化;他之所以命名为VQGAN,核心的区别是他的解码这一块,就是隐空间特征生成图像这块,他用的是GAN:有两个CNN,一个生成式CNN生成图像,一个判别式CNN对生成的真假打分。所以说他整个pipeline是没有transformer的。并不是编码器和解码器变成了transformer。

Sora技术3:编码图像tokenizer-从VQ- VAE、VQGAN到MAGVIT

整个pipeline如上图所示。从左到右看,下面一层就是VQGAN的整个pipeline,img到编码器CNN,然后通过图像分词器tokenizer转成 Zq,然后再通过GAN生成img。整个pipeline有三个CNN。编码器cnn encoder,解码器CNN decoder,然后是判别器CNN。

Transformer干的是哪个活呢?是对分词器的优化,和对Z- Zq表示的优化。在VQ VAE中,分词器就是一个pixel CNN,当然这个也算是比较好的表达方式,如果你学过数字图像处理这个课,最原始的图像离散化表示是超像素分割。Transformer第一作用的生产出最具有表达力的图像词汇表;第二个作用是,当前的图像,用了词汇1-i-1共i个词汇后,还需要哪个词汇(图像语义token),能更好的表达当前的图像,从而生产出最具有表达力的Zq。

事实上,这个transformer表达的分词器词汇表对整个模型来说非常关键。

Agent的潜意识
分享到朋友圈
收藏
收藏
评分

综合评分:

我的评分
Xinstall 15天会员特权
Xinstall是专业的数据分析服务商,帮企业追踪渠道安装来源、裂变拉新统计、广告流量指导等,广泛应用于广告效果统计、APP地推与CPS/CPA归属统计等方面。
20羽毛
立即兑换
一书一课30天会员体验卡
领30天VIP会员,110+门职场大课,250+本精读好书免费学!助你提升职场力!
20羽毛
立即兑换
顺丰同城急送全国通用20元优惠券
顺丰同城急送是顺丰推出的平均1小时送全城的即时快送服务,专业安全,准时送达!
30羽毛
立即兑换
Agent的潜意识
Agent的潜意识
发表文章7
一线互联网公司算法从业人员。给大家带来搜索推荐、CV、强化学习一线从业视角!
确认要消耗 羽毛购买
编码图像tokenizer-从VQGAN到MAGVIT吗?
考虑一下
很遗憾,羽毛不足
我知道了

我们致力于提供一个高质量内容的交流平台。为落实国家互联网信息办公室“依法管网、依法办网、依法上网”的要求,为完善跟帖评论自律管理,为了保护用户创造的内容、维护开放、真实、专业的平台氛围,我们团队将依据本公约中的条款对注册用户和发布在本平台的内容进行管理。平台鼓励用户创作、发布优质内容,同时也将采取必要措施管理违法、侵权或有其他不良影响的网络信息。


一、根据《网络信息内容生态治理规定》《中华人民共和国未成年人保护法》等法律法规,对以下违法、不良信息或存在危害的行为进行处理。
1. 违反法律法规的信息,主要表现为:
    1)反对宪法所确定的基本原则;
    2)危害国家安全,泄露国家秘密,颠覆国家政权,破坏国家统一,损害国家荣誉和利益;
    3)侮辱、滥用英烈形象,歪曲、丑化、亵渎、否定英雄烈士事迹和精神,以侮辱、诽谤或者其他方式侵害英雄烈士的姓名、肖像、名誉、荣誉;
    4)宣扬恐怖主义、极端主义或者煽动实施恐怖活动、极端主义活动;
    5)煽动民族仇恨、民族歧视,破坏民族团结;
    6)破坏国家宗教政策,宣扬邪教和封建迷信;
    7)散布谣言,扰乱社会秩序,破坏社会稳定;
    8)宣扬淫秽、色情、赌博、暴力、凶杀、恐怖或者教唆犯罪;
    9)煽动非法集会、结社、游行、示威、聚众扰乱社会秩序;
    10)侮辱或者诽谤他人,侵害他人名誉、隐私和其他合法权益;
    11)通过网络以文字、图片、音视频等形式,对未成年人实施侮辱、诽谤、威胁或者恶意损害未成年人形象进行网络欺凌的;
    12)危害未成年人身心健康的;
    13)含有法律、行政法规禁止的其他内容;


2. 不友善:不尊重用户及其所贡献内容的信息或行为。主要表现为:
    1)轻蔑:贬低、轻视他人及其劳动成果;
    2)诽谤:捏造、散布虚假事实,损害他人名誉;
    3)嘲讽:以比喻、夸张、侮辱性的手法对他人或其行为进行揭露或描述,以此来激怒他人;
    4)挑衅:以不友好的方式激怒他人,意图使对方对自己的言论作出回应,蓄意制造事端;
    5)羞辱:贬低他人的能力、行为、生理或身份特征,让对方难堪;
    6)谩骂:以不文明的语言对他人进行负面评价;
    7)歧视:煽动人群歧视、地域歧视等,针对他人的民族、种族、宗教、性取向、性别、年龄、地域、生理特征等身份或者归类的攻击;
    8)威胁:许诺以不良的后果来迫使他人服从自己的意志;


3. 发布垃圾广告信息:以推广曝光为目的,发布影响用户体验、扰乱本网站秩序的内容,或进行相关行为。主要表现为:
    1)多次发布包含售卖产品、提供服务、宣传推广内容的垃圾广告。包括但不限于以下几种形式:
    2)单个帐号多次发布包含垃圾广告的内容;
    3)多个广告帐号互相配合发布、传播包含垃圾广告的内容;
    4)多次发布包含欺骗性外链的内容,如未注明的淘宝客链接、跳转网站等,诱骗用户点击链接
    5)发布大量包含推广链接、产品、品牌等内容获取搜索引擎中的不正当曝光;
    6)购买或出售帐号之间虚假地互动,发布干扰网站秩序的推广内容及相关交易。
    7)发布包含欺骗性的恶意营销内容,如通过伪造经历、冒充他人等方式进行恶意营销;
    8)使用特殊符号、图片等方式规避垃圾广告内容审核的广告内容。


4. 色情低俗信息,主要表现为:
    1)包含自己或他人性经验的细节描述或露骨的感受描述;
    2)涉及色情段子、两性笑话的低俗内容;
    3)配图、头图中包含庸俗或挑逗性图片的内容;
    4)带有性暗示、性挑逗等易使人产生性联想;
    5)展现血腥、惊悚、残忍等致人身心不适;
    6)炒作绯闻、丑闻、劣迹等;
    7)宣扬低俗、庸俗、媚俗内容。


5. 不实信息,主要表现为:
    1)可能存在事实性错误或者造谣等内容;
    2)存在事实夸大、伪造虚假经历等误导他人的内容;
    3)伪造身份、冒充他人,通过头像、用户名等个人信息暗示自己具有特定身份,或与特定机构或个人存在关联。


6. 传播封建迷信,主要表现为:
    1)找人算命、测字、占卜、解梦、化解厄运、使用迷信方式治病;
    2)求推荐算命看相大师;
    3)针对具体风水等问题进行求助或咨询;
    4)问自己或他人的八字、六爻、星盘、手相、面相、五行缺失,包括通过占卜方法问婚姻、前程、运势,东西宠物丢了能不能找回、取名改名等;


7. 文章标题党,主要表现为:
    1)以各种夸张、猎奇、不合常理的表现手法等行为来诱导用户;
    2)内容与标题之间存在严重不实或者原意扭曲;
    3)使用夸张标题,内容与标题严重不符的。


8.「饭圈」乱象行为,主要表现为:
    1)诱导未成年人应援集资、高额消费、投票打榜
    2)粉丝互撕谩骂、拉踩引战、造谣攻击、人肉搜索、侵犯隐私
    3)鼓动「饭圈」粉丝攀比炫富、奢靡享乐等行为
    4)以号召粉丝、雇用网络水军、「养号」形式刷量控评等行为
    5)通过「蹭热点」、制造话题等形式干扰舆论,影响传播秩序


9. 其他危害行为或内容,主要表现为:
    1)可能引发未成年人模仿不安全行为和违反社会公德行为、诱导未成年人不良嗜好影响未成年人身心健康的;
    2)不当评述自然灾害、重大事故等灾难的;
    3)美化、粉饰侵略战争行为的;
    4)法律、行政法规禁止,或可能对网络生态造成不良影响的其他内容。


二、违规处罚
本网站通过主动发现和接受用户举报两种方式收集违规行为信息。所有有意的降低内容质量、伤害平台氛围及欺凌未成年人或危害未成年人身心健康的行为都是不能容忍的。
当一个用户发布违规内容时,本网站将依据相关用户违规情节严重程度,对帐号进行禁言 1 天、7 天、15 天直至永久禁言或封停账号的处罚。当涉及欺凌未成年人、危害未成年人身心健康、通过作弊手段注册、使用帐号,或者滥用多个帐号发布违规内容时,本网站将加重处罚。


三、申诉
随着平台管理经验的不断丰富,本网站出于维护本网站氛围和秩序的目的,将不断完善本公约。
如果本网站用户对本网站基于本公约规定做出的处理有异议,可以通过「建议反馈」功能向本网站进行反馈。
(规则的最终解释权归属本网站所有)

我知道了
恭喜你~答对了
+5羽毛
下一次认真读哦
成功推荐给其他人
+ 10羽毛
评论成功且进入审核!审核通过后,您将获得10羽毛的奖励。分享本文章给好友阅读最高再得15羽毛~
(羽毛可至 "羽毛精选" 兑换礼品)
好友微信扫一扫
复制链接