很可惜 T 。T 您现在还不是作者身份,不能自主发稿哦~
如有投稿需求,请把文章发送到邮箱tougao@appcpx.com,一经录用会有专人和您联系
咨询如何成为春羽作者请联系:鸟哥笔记小羽毛(ngbjxym)
今天是大年初一,我给您拜年了!祝我的好朋友:
显神功牛刀小试,
勤学习汗牛充栋;
进财源多如牛毛,
涨运势牛气冲天!
今天的问题来自于上海的李总,他在做行业客户细分。想要一些客户分级分群的相关策略和资料。我资料倒是有很多,但是不知道能不能给他一些好的建议啊。
说实话,虽然我之前做过很多客户分级分群,但是总感觉做的不太行。网上类似的文章也很多,看来看去无非也就这么些东西。我就给大家分享一下我的理解吧。
另外,我在挑战春节不打烊,每天都分享原创文章,欢迎加我个人微信:shirenpengwh,加入催更群,小鞭子催我快快写稿
至简式客户细分
客户细分的核心目的是精细化运营。其实就是对不同的用户分别制定运营策略,期望实现利益最大化。
所以客户细分最朴素的思想,就是切分。大家应该听过一个词“高净值人群”,这是传统营销时代流传最广的客户分群产物。
一般来说,用户细分得遵守MECE原则,上面所有的方法其实都已经是MECE了。但是也不是绝对的,后面就有特例。
受限于当时的数据和技术,客户细分大多都还是在CRM中进行因为只有在CRM中才能获取用户的各种信息。细分的逻辑也就非常简单了,大多是从某一个单一维度进行切分。
比如“按客户净值分、按**来源分、按消费频次分、按年龄段分、按当月累计消费金额段分”等。这种客户切分方式比较原始和粗糙,远远称不上“客户细分”。但是这种切分方式是所有人最容易想到,也是最容易理解的方式。
所以在早期的数据交易中,卖家会标注上数据来源,企图在名称上体现**的价值。当然现在买卖个人隐私数据已经入刑法了,大家千万别碰哈。
业务分析式客户细分
再进一步,就有人从各个角度总结提炼客户细分的逻辑,比如从用户生命周期上细分,我们对不同处在生命周期的客户用不同的策略,期望拉长用户在成熟期的时间,创造更多的价值。
比如:
按用户生命周期分,如“潜在用户、新用户、付费用户、复购用户、流失用户”等,不同行业的生命周期不完全一样;
按用户运营流程分,如AARRR、RARRA、“新用户、使用用户、兴趣用户、意向用户、付费用户”等;
按用户积分等级分(忠诚度),如传统的会员卡级别、淘宝的“皇冠、钻石”等;
按用户的各种标签切分,这个自由度就非常大了,信息非常丰富。
这些方法都非常直观,业务部门最喜欢了。而且对应的策略也非常清晰,基本上顾名就能思义。
这些看上去还是从某一个固定的维度对客户进行切分,但是一般来说这些维度都是经过业务理解、加工之后的。
举个简单的例子:信用卡的不同级别就是一个附带非常复杂规则的客户细分模型。只有达到了某几个条件,才能升级卡片的等级。当然,享受到的权益也是不一样的。市场上甚至有专门研究信用卡养卡规则的人和公司。
组合式客户细分套路
前面说的都是从单一维度对客户进行群体切分的方法,这种单一维度我们可以相处很多很多。
那如果再往前进一步,我们还能怎么细分呢?答对了!那就可以对各单属性进行组合后细分,RFM就是典型的一种。
这个模型非常好用,流传很广,认同度高,可解释强,对应的策略也很清楚。
RFM模型,就是用户细分的经典模型。它就是用“最近一次消费 (Recency)”、”消费频率 (Frequency)”、”消费金额 (Monetary)”,对用户切三刀,划分成为8个群体,然后来区别对待。
其实RFM本质上是一种象限模型,只不过不是4象限,而是3个指标,每个指标离散为0和1,总共分为8个象限。而且我们在用RFM的时候,也可以进行各种变种,比如改掉一个指标、把“高、低”区分为“高、中、低”等等。但是不管咋变,本质还是一样。
RFM的变种之一就是替换RFM中的M,比如RF+年龄段。当然,只要你能想出来,可以任意组合,比如当月消费等级+用户年龄段+地区等。之前我做过汽车行业的用户细分,就做过客户偏好+投诉频次+活动参与的组合维度,可以分辨出忠诚客户还是难缠客户。
一样啊,这种方式几乎可以无限组合,只要你能想出来,随便拿两个以上的关键业务指标一组合,立刻可以把客户切分成任意群体。
移动通信领域对客户群体的细分也是做到了机制,各种乱七八糟的套餐可不是运营人员瞎想出来的,而是使用不同组的数据,通过各种各种算法算出来的。
提到算法,我们还可以用各种聚类算法实现客户细分。但是这些算法计算的结果,业务可解释性就比前面所有的细分方法差多了。而且有些算法存在随机种子等因素,每次执行的结果不一样。比如K-means的聚类,这个K值要么人为设定,要么随机。这随机就随出事情了。同样一份数据,很可能就出现下面这种截然不同的情况。
这种情况让我们给业务解释的时候非常困难,全都得靠编。有一次更搞笑,我们某甲方要“大数据”+“算法”,而且必须要保证执行幂等,就是每次执行的结果必须一样,要不没法给别人解释。遇到聚类这种含有随机数的情况,那可不行了。最后我们给把算法给改了,只要是一个结果集进去,不管怎么执行,都是一个结果。唉,我们太难了。
当然,除了K-Means之外,我们还能用KNN、层次聚类等等各种聚类算法。除了层次聚类稍微好解释一些之外,其他算法计算结果都得靠编。更不用提对应的运营策略了。
那有没有更好的客户分群方法呢?当然有的。
可能有哥们说了,你说的这些我都知道,用处说实话也不大。
这话得分怎么说了,如果说只是客户细分,咱就这些招。但是如果说指导运营,那得具体分析各层用户的问题,后面还得带上恰当的运营建议。得跟运营同学一起定好策略,制定执行计划,跟进,调整,优化。
不过,咱说回来,除了这些招之外,咱还有更经典的用户细分方法吗?
答案是“有”!
但是再往前一步就不能是通用的方法了,最少得细分到行业和具体场景了。比如快消行业就有非常经典的“阿里八类人群”:
所有快消行业都可以参照这八大类进行客户细分。这里你可能就会注意到,这明显就不符合MECE的原则嘛!是的,但是这八大类已经涵盖绝大部分人群了,剩下那一星半点的也不影响全局。
那这八大类是怎么来的呢?业务洞察!没别的招。
当然有些洞察也很有意思,还会从用户的“星座”角度上进行分析,也不知道是不是故弄玄虚。比如腾讯帮喜茶做的用户洞察就有这样的结论:
也有很多业务洞察会与社会现状进行结合,也就是传说中的PEST模型(政治politics,经济economy,社会society,技术technology)。比如:
你看上面细分的,从数学角度上根本没啥逻辑么。也完全不符合MECE原则,各部分之间还有交差,但是丝毫不影响其业务解释力。因为里面夹杂着对当今社会各种现象的洞察。
京东和尼尔森对用户生命周期也做了非常深入的研究,他们的洞察也很有意思。他们提出的口号是“实现品牌用户资产波浪式增长”:
用户细分是精细化运营的重要手段。
最朴素的思想,就是从某个固定的属性对用户进行切分,比如按客户净值;
再进一步,是从业务分析的角度进行切分,比如按用户生命周期;
再进一步,是将多个维度组合之后进行切分,比如流传很广的RFM模型,或者使用KNN、K-Means、层次聚类等各种聚类算法。
往前一步就是行业特殊洞察了,甚至是垂直领域的特殊洞见,这就得有很深的行业用户洞察能力,比如阿里提出的快消领域“八大类人群”。
我手上有几十份不同行业的用户细分洞察报告,各位可以下载下来参考一下。
至于技术实现,其实数据量不大的话,用excel就能搞定;数据量多一些就用关系型数据库,写SQL搞定;再多的话就用大数据平台,用分布式计算处理了。
用算法进行客户分群的技术实现,在传统营销时代,更多的人用的是SPSS、SAS等数据挖掘软件;之前有一阵子还流行过R语言;现在Python当道,如日中天。用起来非常简单,基本上就是组织数据结构,然后调个包就可以了。
今天的分享就是这样。欢迎大家加我个人微信号:shirenpengwh ,一起探讨大数据、数据分析相关知识。每天分享一篇原创内容给大家,我们一起学习,共同进步。
扩展阅读:几十份行业用户细分洞察报告,公众号“大数据架构师”后台回复“用户细分”即可下载。
配合以下文章享受更佳
本文为作者独立观点,不代表鸟哥笔记立场,未经允许不得转载。
《鸟哥笔记版权及免责申明》 如对文章、图片、字体等版权有疑问,请点击 反馈举报
Powered by QINGMOB PTE. LTD. © 2010-2022 上海青墨信息科技有限公司 沪ICP备2021034055号-6
我们致力于提供一个高质量内容的交流平台。为落实国家互联网信息办公室“依法管网、依法办网、依法上网”的要求,为完善跟帖评论自律管理,为了保护用户创造的内容、维护开放、真实、专业的平台氛围,我们团队将依据本公约中的条款对注册用户和发布在本平台的内容进行管理。平台鼓励用户创作、发布优质内容,同时也将采取必要措施管理违法、侵权或有其他不良影响的网络信息。
一、根据《网络信息内容生态治理规定》《中华人民共和国未成年人保护法》等法律法规,对以下违法、不良信息或存在危害的行为进行处理。
1. 违反法律法规的信息,主要表现为:
1)反对宪法所确定的基本原则;
2)危害国家安全,泄露国家秘密,颠覆国家政权,破坏国家统一,损害国家荣誉和利益;
3)侮辱、滥用英烈形象,歪曲、丑化、亵渎、否定英雄烈士事迹和精神,以侮辱、诽谤或者其他方式侵害英雄烈士的姓名、肖像、名誉、荣誉;
4)宣扬恐怖主义、极端主义或者煽动实施恐怖活动、极端主义活动;
5)煽动民族仇恨、民族歧视,破坏民族团结;
6)破坏国家宗教政策,宣扬邪教和封建迷信;
7)散布谣言,扰乱社会秩序,破坏社会稳定;
8)宣扬淫秽、色情、赌博、暴力、凶杀、恐怖或者教唆犯罪;
9)煽动非法集会、结社、游行、示威、聚众扰乱社会秩序;
10)侮辱或者诽谤他人,侵害他人名誉、隐私和其他合法权益;
11)通过网络以文字、图片、音视频等形式,对未成年人实施侮辱、诽谤、威胁或者恶意损害未成年人形象进行网络欺凌的;
12)危害未成年人身心健康的;
13)含有法律、行政法规禁止的其他内容;
2. 不友善:不尊重用户及其所贡献内容的信息或行为。主要表现为:
1)轻蔑:贬低、轻视他人及其劳动成果;
2)诽谤:捏造、散布虚假事实,损害他人名誉;
3)嘲讽:以比喻、夸张、侮辱性的手法对他人或其行为进行揭露或描述,以此来激怒他人;
4)挑衅:以不友好的方式激怒他人,意图使对方对自己的言论作出回应,蓄意制造事端;
5)羞辱:贬低他人的能力、行为、生理或身份特征,让对方难堪;
6)谩骂:以不文明的语言对他人进行负面评价;
7)歧视:煽动人群歧视、地域歧视等,针对他人的民族、种族、宗教、性取向、性别、年龄、地域、生理特征等身份或者归类的攻击;
8)威胁:许诺以不良的后果来迫使他人服从自己的意志;
3. 发布垃圾广告信息:以推广曝光为目的,发布影响用户体验、扰乱本网站秩序的内容,或进行相关行为。主要表现为:
1)多次发布包含售卖产品、提供服务、宣传推广内容的垃圾广告。包括但不限于以下几种形式:
2)单个帐号多次发布包含垃圾广告的内容;
3)多个广告帐号互相配合发布、传播包含垃圾广告的内容;
4)多次发布包含欺骗性外链的内容,如未注明的淘宝客链接、跳转网站等,诱骗用户点击链接
5)发布大量包含推广链接、产品、品牌等内容获取搜索引擎中的不正当曝光;
6)购买或出售帐号之间虚假地互动,发布干扰网站秩序的推广内容及相关交易。
7)发布包含欺骗性的恶意营销内容,如通过伪造经历、冒充他人等方式进行恶意营销;
8)使用特殊符号、图片等方式规避垃圾广告内容审核的广告内容。
4. 色情低俗信息,主要表现为:
1)包含自己或他人性经验的细节描述或露骨的感受描述;
2)涉及色情段子、两性笑话的低俗内容;
3)配图、头图中包含庸俗或挑逗性图片的内容;
4)带有性暗示、性挑逗等易使人产生性联想;
5)展现血腥、惊悚、残忍等致人身心不适;
6)炒作绯闻、丑闻、劣迹等;
7)宣扬低俗、庸俗、媚俗内容。
5. 不实信息,主要表现为:
1)可能存在事实性错误或者造谣等内容;
2)存在事实夸大、伪造虚假经历等误导他人的内容;
3)伪造身份、冒充他人,通过头像、用户名等个人信息暗示自己具有特定身份,或与特定机构或个人存在关联。
6. 传播封建迷信,主要表现为:
1)找人算命、测字、占卜、解梦、化解厄运、使用迷信方式治病;
2)求推荐算命看相大师;
3)针对具体风水等问题进行求助或咨询;
4)问自己或他人的八字、六爻、星盘、手相、面相、五行缺失,包括通过占卜方法问婚姻、前程、运势,东西宠物丢了能不能找回、取名改名等;
7. 文章标题党,主要表现为:
1)以各种夸张、猎奇、不合常理的表现手法等行为来诱导用户;
2)内容与标题之间存在严重不实或者原意扭曲;
3)使用夸张标题,内容与标题严重不符的。
8.「饭圈」乱象行为,主要表现为:
1)诱导未成年人应援集资、高额消费、投票打榜
2)粉丝互撕谩骂、拉踩引战、造谣攻击、人肉搜索、侵犯隐私
3)鼓动「饭圈」粉丝攀比炫富、奢靡享乐等行为
4)以号召粉丝、雇用网络水军、「养号」形式刷量控评等行为
5)通过「蹭热点」、制造话题等形式干扰舆论,影响传播秩序
9. 其他危害行为或内容,主要表现为:
1)可能引发未成年人模仿不安全行为和违反社会公德行为、诱导未成年人不良嗜好影响未成年人身心健康的;
2)不当评述自然灾害、重大事故等灾难的;
3)美化、粉饰侵略战争行为的;
4)法律、行政法规禁止,或可能对网络生态造成不良影响的其他内容。
二、违规处罚
本网站通过主动发现和接受用户举报两种方式收集违规行为信息。所有有意的降低内容质量、伤害平台氛围及欺凌未成年人或危害未成年人身心健康的行为都是不能容忍的。
当一个用户发布违规内容时,本网站将依据相关用户违规情节严重程度,对帐号进行禁言 1 天、7 天、15 天直至永久禁言或封停账号的处罚。当涉及欺凌未成年人、危害未成年人身心健康、通过作弊手段注册、使用帐号,或者滥用多个帐号发布违规内容时,本网站将加重处罚。
三、申诉
随着平台管理经验的不断丰富,本网站出于维护本网站氛围和秩序的目的,将不断完善本公约。
如果本网站用户对本网站基于本公约规定做出的处理有异议,可以通过「建议反馈」功能向本网站进行反馈。
(规则的最终解释权归属本网站所有)