APP推广合作
联系“鸟哥笔记小乔”
数据分析-建模分析基本流程
2021-03-24 10:39:03

日常的数据分析工作中,除了基本的拆解法、对比法做分析外,也经常需要用到模型的方法来做预测或者分类。这里会介绍建模分析的基本流程及常见处理方法。

0描述性分析

在拿到数据后,不能着急立刻开始清洗数据或者模型训练,而是先了解数据(除建模分析外,其他的数据开发也要做这一步),这样才能避免后期的踩坑,否则十有八九是要复工的。那“了解数据”这一环节,具体要了解哪些东西呢?

  1. 了解各个特征的业务含义和计算逻辑

  2. 各个特征的分布是否符合预期

  3. 特征之间的相关性如何,是否符合基本逻辑

  4. 特征和目标值的相关性如何,是否符合基本逻辑

在相关性分析这里,数值型变量之间可通过计算相关系数或者画图呈现;数值型变量和分类变量可通过箱线图呈现关系。

0缺失值处理

在初步了解数据后,需要做一些数据预处理的行为。第一步就是对缺失值处理,一般根据样本量多少以及缺失比例,来判断是“宁缺毋滥”的删除,还是缺失值填充。具体处理的思路可以是这样的:

  1. 统计计算样本量n,各个特征数据缺失率y,各样本数据特征缺失率x

  2. 特征缺失率x比较高的样本一般都建议删除;因为多个特征都缺失,填补也比较困难,即使填补信息偏差也会比较大。

  3. 如果某特征缺失率y比较大,则删除此特征;如果特征缺失率低且样本量比较大的话,可删除特征缺失的样本。如果样本量少不可删除,则对缺失值做填充。

缺失值填充的方法有:

  1. 根据特征的众数、中位数或者平均值来填充;也可以对样本做分类,根据所在类的平均值众数等填充;

  2. 通过回归法来做样本填充,缺失值作为因变量,其他特征做自变量去预测;

  3. 还可通过比较复杂的方法,如多重插补法。

0异常数据处理

处理完缺失值后,需要做异常数据处理。之前介绍过一篇异常数据处理的方法,数据分析-异常数据识别;这篇介绍了多种适应不同场景下的异常数据识别方法。

0数据标准化处理

对于很多模型,如线性回归、逻辑回归、Kmeans聚类等,需要计算不同特征的系数,或者计算样本距离。这种情况下,如果不同特征的数值量级差的特别大,会严重影响系数和距离的计算,甚至这种计算都会失去意义。所以在建模前必须要做的就是要去量纲,做标准化处理。当然有些模型是不需要做数据标准化处理的,如决策树、随机森林、朴素贝叶斯等。

当前最常用的数据标准化处理方法有:

1. 最小—最大规范化

(x-min)/(max-min),将其规范到[0,1]之间

2. z值规范化

(x-均值)/标准差,将其规范为均值为0,标准差为1;

如果这种情况,受离群点影响比较大的话,可以用中位数代替均值,用绝对标准差代替标准差。

还需要注意的是,如果样本分布非常有偏的话,可以先做box-cox变换,将其往正态分布变换后再标准化。

0特征选择

在做完基本的数据清洗以及特征变换后,需要做的是特征选择,一般做特征选择的原因是:

  1. 某些特征存在多重共线性,这种情况对线性回归和逻辑回归影响比较大;

  2. 特征太多,有些特征增加了模型复杂性却与模型无关,不能全部入模,需要筛选出价值更高的特征。

5.1 多重共线性

是什么:模型的解释变量之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计准确;

影响

1)影响模型的稳定性,而且影响模型的解释;

举个例子,假设消费支出=0.3*收入,这样可能的模型输出的是:

消费支出+收入

1.3*收入

1.6*收入-消费支出

同样的数值输出,不同的公式计算,会非常模型解释和稳定性的。

2)线性回归模型,会导致最小二乘估计无法计算系数,即使可计算系数方差也很大,即1)中提到的不稳定。

怎么识别

  1. 计算特征之间的相关系数,对于相关性特别高的特征,根据业务需要保留有代表性的特征

  2. 方差膨胀因子(VIF)

计算每个特征被其他特征拟合的情况,如特征j,被其他特征线性拟合的决定系数为R2;通常拟合越好,决定系数就越大且最大可达到1。


所以,当方差膨胀因子过大,说明此特征存在多重共线性。一般大于10会认为有比较强的多重共线性问题。

怎么解决

  1. 删除共线性强的特征

  2. 线性回归模型的话,可采用岭回归的估算方式解决

5.2 特征太多

不同的模型和应用场景下特征筛选方式不同:

  1. 对于二分类问题来说,筛选逻辑是:筛选出对二分类结果区分度比较高的特征;可以通过计算IV(information value)值的大小来筛选,一般IV值越大,此特征对二分类结果更有区分度。

  2. 对于回归预测问题,主要针对多元线性回归。筛选特征的方法有:

    特征子集选择法、正则化法以及降维法。

1. 特征子集选择法

特征子集选择法有向前逐步选择法和向后逐步选择法:

  • 向前逐步选择

具体方法就是从0个特征开始,一个一个逐步从剩余特征中添加使得模型拟合误差最小的特征,在添加过程中得到模型拟合最优的特征组合。

  • 向后逐步选择

和向前逐步选择类似,只是反过来了,让所有特征入模,再一步一步剔除效果不好的特征,从而达到最优。

2. 正则化压缩无意义特征的系数

比较好用的方法是lasso。一般的线形回归我们只会希望它的误差平方和最小,但是lasso的目标函数在原有目标函数后面加了一项系数惩罚项。这样让目标函数最小,可以实现无意义特征的系数为0,从而实现特征选择。

3. PCA降维

这个是将原有有一定线性关系的特征线形组合成新的相互独立的特征,所以不适合原有特征已经相互独立的情况。

以上就是数据建模的前期准备流程,做完这些内容就可以开始模型训练,对模型结果进行预测分析啦,而这部分则是不同模型会有不同的具体处理方法。总之,模型训练前的数据分析、数据清洗以及特征选择非常重要,甚至他们是决定建模是否成功的关键因素,所以这部分工作一定要做细做准确。

感谢阅读,以上就是我要分享的内容 ^_^

-END-

运营那些事儿
分享到朋友圈
收藏
收藏
评分

综合评分:

我的评分
Xinstall 15天会员特权
Xinstall是专业的数据分析服务商,帮企业追踪渠道安装来源、裂变拉新统计、广告流量指导等,广泛应用于广告效果统计、APP地推与CPS/CPA归属统计等方面。
20羽毛
立即兑换
一书一课30天会员体验卡
领30天VIP会员,110+门职场大课,250+本精读好书免费学!助你提升职场力!
20羽毛
立即兑换
顺丰同城急送全国通用20元优惠券
顺丰同城急送是顺丰推出的平均1小时送全城的即时快送服务,专业安全,准时送达!
30羽毛
立即兑换
运营那些事儿
运营那些事儿
发表文章49316
确认要消耗 0羽毛购买
数据分析-建模分析基本流程吗?
考虑一下
很遗憾,羽毛不足
我知道了

我们致力于提供一个高质量内容的交流平台。为落实国家互联网信息办公室“依法管网、依法办网、依法上网”的要求,为完善跟帖评论自律管理,为了保护用户创造的内容、维护开放、真实、专业的平台氛围,我们团队将依据本公约中的条款对注册用户和发布在本平台的内容进行管理。平台鼓励用户创作、发布优质内容,同时也将采取必要措施管理违法、侵权或有其他不良影响的网络信息。


一、根据《网络信息内容生态治理规定》《中华人民共和国未成年人保护法》等法律法规,对以下违法、不良信息或存在危害的行为进行处理。
1. 违反法律法规的信息,主要表现为:
    1)反对宪法所确定的基本原则;
    2)危害国家安全,泄露国家秘密,颠覆国家政权,破坏国家统一,损害国家荣誉和利益;
    3)侮辱、滥用英烈形象,歪曲、丑化、亵渎、否定英雄烈士事迹和精神,以侮辱、诽谤或者其他方式侵害英雄烈士的姓名、肖像、名誉、荣誉;
    4)宣扬恐怖主义、极端主义或者煽动实施恐怖活动、极端主义活动;
    5)煽动民族仇恨、民族歧视,破坏民族团结;
    6)破坏国家宗教政策,宣扬邪教和封建迷信;
    7)散布谣言,扰乱社会秩序,破坏社会稳定;
    8)宣扬淫秽、色情、赌博、暴力、凶杀、恐怖或者教唆犯罪;
    9)煽动非法集会、结社、游行、示威、聚众扰乱社会秩序;
    10)侮辱或者诽谤他人,侵害他人名誉、隐私和其他合法权益;
    11)通过网络以文字、图片、音视频等形式,对未成年人实施侮辱、诽谤、威胁或者恶意损害未成年人形象进行网络欺凌的;
    12)危害未成年人身心健康的;
    13)含有法律、行政法规禁止的其他内容;


2. 不友善:不尊重用户及其所贡献内容的信息或行为。主要表现为:
    1)轻蔑:贬低、轻视他人及其劳动成果;
    2)诽谤:捏造、散布虚假事实,损害他人名誉;
    3)嘲讽:以比喻、夸张、侮辱性的手法对他人或其行为进行揭露或描述,以此来激怒他人;
    4)挑衅:以不友好的方式激怒他人,意图使对方对自己的言论作出回应,蓄意制造事端;
    5)羞辱:贬低他人的能力、行为、生理或身份特征,让对方难堪;
    6)谩骂:以不文明的语言对他人进行负面评价;
    7)歧视:煽动人群歧视、地域歧视等,针对他人的民族、种族、宗教、性取向、性别、年龄、地域、生理特征等身份或者归类的攻击;
    8)威胁:许诺以不良的后果来迫使他人服从自己的意志;


3. 发布垃圾广告信息:以推广曝光为目的,发布影响用户体验、扰乱本网站秩序的内容,或进行相关行为。主要表现为:
    1)多次发布包含售卖产品、提供服务、宣传推广内容的垃圾广告。包括但不限于以下几种形式:
    2)单个帐号多次发布包含垃圾广告的内容;
    3)多个广告帐号互相配合发布、传播包含垃圾广告的内容;
    4)多次发布包含欺骗性外链的内容,如未注明的淘宝客链接、跳转网站等,诱骗用户点击链接
    5)发布大量包含推广链接、产品、品牌等内容获取搜索引擎中的不正当曝光;
    6)购买或出售帐号之间虚假地互动,发布干扰网站秩序的推广内容及相关交易。
    7)发布包含欺骗性的恶意营销内容,如通过伪造经历、冒充他人等方式进行恶意营销;
    8)使用特殊符号、图片等方式规避垃圾广告内容审核的广告内容。


4. 色情低俗信息,主要表现为:
    1)包含自己或他人性经验的细节描述或露骨的感受描述;
    2)涉及色情段子、两性笑话的低俗内容;
    3)配图、头图中包含庸俗或挑逗性图片的内容;
    4)带有性暗示、性挑逗等易使人产生性联想;
    5)展现血腥、惊悚、残忍等致人身心不适;
    6)炒作绯闻、丑闻、劣迹等;
    7)宣扬低俗、庸俗、媚俗内容。


5. 不实信息,主要表现为:
    1)可能存在事实性错误或者造谣等内容;
    2)存在事实夸大、伪造虚假经历等误导他人的内容;
    3)伪造身份、冒充他人,通过头像、用户名等个人信息暗示自己具有特定身份,或与特定机构或个人存在关联。


6. 传播封建迷信,主要表现为:
    1)找人算命、测字、占卜、解梦、化解厄运、使用迷信方式治病;
    2)求推荐算命看相大师;
    3)针对具体风水等问题进行求助或咨询;
    4)问自己或他人的八字、六爻、星盘、手相、面相、五行缺失,包括通过占卜方法问婚姻、前程、运势,东西宠物丢了能不能找回、取名改名等;


7. 文章标题党,主要表现为:
    1)以各种夸张、猎奇、不合常理的表现手法等行为来诱导用户;
    2)内容与标题之间存在严重不实或者原意扭曲;
    3)使用夸张标题,内容与标题严重不符的。


8.「饭圈」乱象行为,主要表现为:
    1)诱导未成年人应援集资、高额消费、投票打榜
    2)粉丝互撕谩骂、拉踩引战、造谣攻击、人肉搜索、侵犯隐私
    3)鼓动「饭圈」粉丝攀比炫富、奢靡享乐等行为
    4)以号召粉丝、雇用网络水军、「养号」形式刷量控评等行为
    5)通过「蹭热点」、制造话题等形式干扰舆论,影响传播秩序


9. 其他危害行为或内容,主要表现为:
    1)可能引发未成年人模仿不安全行为和违反社会公德行为、诱导未成年人不良嗜好影响未成年人身心健康的;
    2)不当评述自然灾害、重大事故等灾难的;
    3)美化、粉饰侵略战争行为的;
    4)法律、行政法规禁止,或可能对网络生态造成不良影响的其他内容。


二、违规处罚
本网站通过主动发现和接受用户举报两种方式收集违规行为信息。所有有意的降低内容质量、伤害平台氛围及欺凌未成年人或危害未成年人身心健康的行为都是不能容忍的。
当一个用户发布违规内容时,本网站将依据相关用户违规情节严重程度,对帐号进行禁言 1 天、7 天、15 天直至永久禁言或封停账号的处罚。当涉及欺凌未成年人、危害未成年人身心健康、通过作弊手段注册、使用帐号,或者滥用多个帐号发布违规内容时,本网站将加重处罚。


三、申诉
随着平台管理经验的不断丰富,本网站出于维护本网站氛围和秩序的目的,将不断完善本公约。
如果本网站用户对本网站基于本公约规定做出的处理有异议,可以通过「建议反馈」功能向本网站进行反馈。
(规则的最终解释权归属本网站所有)

我知道了
恭喜你~答对了
+5羽毛
下一次认真读哦
成功推荐给其他人
+ 10羽毛
评论成功且进入审核!审核通过后,您将获得10羽毛的奖励。分享本文章给好友阅读最高再得15羽毛~
(羽毛可至 "羽毛精选" 兑换礼品)
好友微信扫一扫
复制链接