APP推广合作
联系“鸟哥笔记小乔”
你真的了解参数估计和假设检验吗?
2020-03-20 09:24:10

本文来自读者投稿,作者:黄同学


这是一篇关于推断统计、参数估计和假设检验等概念的全面讲解以及在python中的如何实现的文章,全文共5000字,建议收藏后阅读~

1、总体、个体、样本和样本容量

1)总体、个体、样本和样本容量的概念

  • 总体:我们所要研究的问题的所有数据,称为总体。

  • 个体:总体中的某个数据,就是个体。总体是所有个体构成的集合。

  • 样本:从总体中抽取的部分个体,就构成了一个样本。样本是总体的一个子集。

  • 样本容量:样本中包含的个体数量,称为样本容量。

2)本文章使用的相关python库

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
from sklearn.datasets import load_iris
from scipy import stats
sns.set(style="darkgrid")
mpl.rcParams["font.family"] = "SimHei"
mpl.rcParams["axes.unicode_minus"] = False
warnings.filterwarnings("ignore")

2、推断统计的概念

1)推断统计的概念

“推断统计”研究的是用样本数据去推断总体数量特征的一种方法。它是在对样本数据进行描述的基础上,对统计总体的未知数量特征做出以概率形式表述的推断。

2)为什么要进行推断统计?

在实际研究中,总体数据的获取往往是比较困难的,总体参数一般也是未知的。因此,我们就需要利用总体的某个样本,通过样本统计量去估计总体参数。基于这个需求,我们就需要学习推断统计。

通过上述叙述,我们给推断统计做一个说明。“推断统计”就是利用样本统计量,去推断总体参数的一种方法。
  

3、参数估计(点估计和区间估计)

1)参数估计、点估计和区间统计的概念

  • 参数估计:用样本统计量去估计总体的参数。比如,用样本均值去估计总体均值,用样本方差去估计总体方差。

  • 点估计:用样本统计量的某个取值,直接作为总体参数的估计值。

  • 区间估计:在点估计的基础之上,给出总体参数估计值的一个区间范围,该区间通常由样本统计量加减估计误差得到。

2)点估计说明

① 怎么求鸢尾花的平均花瓣长度?

事实上,世界上鸢尾花千千万,我们总不能说把所有的鸢尾花的数据信息,都统计出来。因此,这就需要我们用样本均值去估计总体均值。

iris = load_iris()
dt = np.concatenate([iris.data,iris.target.reshape(-1,1)],axis=1)
df = pd.DataFrame(dt,columns=iris.feature_names + ["types"])
display(df.sample(5))
# 计算鸢尾花花瓣长度的均值
df["petal length (cm)"].mean()

结果如下:

结果分析:点估计有点简单粗暴,容易受到随机抽样的影响,很难保证结果的准确性。但是,点估计也不是一无是处,样本值是来自总体的一个抽样,在一定程度上还是可以反映出总体的一部分特征。同时,样本容量越接近总体容量,点估计值也会越准确。
  

3)区间估计说明

① 什么是区间估计?

当你碰到一个陌生人,我让你判断出这个人的年龄是多少?这里有两种方式完成你的推断。第一,这个人25岁。第二,这个人20-25岁之间。哪种结果更让你信服呢?很明显第二种更让人信服。对于第一种说法,相当于上述的点估计。第二种,相当于区间估计,就是给定一个区间,这个区间包含真值。

统计学中对区间估计的定义:在点估计的基础之上,给出总体参数估计的一个区间范围,该区间通常由样本统计量加减估计误差得到。

问题:获取一个抽样样本后,如何确定置信区间和置信度?

要确定置信区间置信度,就需要知道样本和总体,在分布上有怎样的联系。中心极限定理给出了这个问题很好的回答。上述疑问将在下面为您一一揭晓。
  

4、中心极限定理

1)中心极限定理的概念

设从均值为μ,方差为σ²的任意一个总体中,抽取样本量为n的样本。当n充分大的时候,样本均值X拔近似服从均值为μ,方差为σ²/n的正态分布。

注意:中心极限定理要求n充分大,但是多大才叫充分大呢?一般在统计学中n>=30称之为大样本(统计学中的一种经验说法)。因此在实际生产中,不用多想,肯定都是大样本。

2)中心极限定理的推导(手写推导)

设X1,X1,…,Xn是从总体中抽取出来的样本容量为n的随机样本,假设总体均值为μ,方差为σ²。那么很显然这n个样本是独立同分布的,“独立”指的就是每个个体被抽到的概率是相同的,每个球被抽到也不会影响其它球被抽到,“同分布”指的是每一个个体都和总体分布一样,均值为μ,方差为σ²。

基于上述叙述,下面我们来推导样本均值X拔的分布。

3)由中心极限定理得出的几个结论

  • 不管进行多少次抽样,每次抽样都会得到一个均值。当每次抽取的样本容量n足够大时,样本均值总会围绕总体均值附近,呈现正态分布

  • 当样本容量n足够大时,样本均值构成正态分布,样本均值近似等于总体均值μ,而样本方差等于总体方差σ²除以n,即σ²/n。

  • 样本均值分布的标准差,我们称之为标准误差,简称“标准误”。

4)python实现中心极限定理

# 设置一个随机种子,保证每次产生的随机数都是一定的
np.random.seed(3)
# 产生均值为50,标准差为80,大小为100000的一个总体
all_ = np.random.normal(loc=50,scale=80,size=100000)
# 创建一个样本均值数组
mean_array = np.zeros(10000)
for i in range(len(mean_array)):
    mean_array[i] = np.random.choice(all_,size=64,replace=True).mean()

display("样本的均值:",mean_array.mean())
display("样本的标准差:",mean_array.std())
display("偏度:",pd.Series(mean_array).skew())
sns.distplot(mean_array)

结果如下:

从图中可以看出:样本均值近似等于总体均值50,而样本方差等于总体方差80除以8,即10。

5、参数估计中置信区间的推导

我们要知道什么是α值,什么是置信度,什么是置信区间,以及怎么求置信区间。首先要了解以下几方面的知识,才能有一个比较透彻的了解。

1)什么是小概率事件
2)随机变量的分布的概念。
3)标准正态分布的概率密度函数和和分布函数
4)随机变量的α分位数的概念。
5)标准正态的分位数表怎么得到的呢?
6)区间估计的概念。
7)置信水平1-α的解释
8)枢轴法求置信区间的步骤。

1)什么是小概率事件?

“小概率事件”指的就是在一次随机试验中,几乎不可能发生。
假定参数是射击靶上10环的位置,随机进行一次射击,打在靶心10环的位置上的可能性很小,但是打中靶子的可能性确很大。然后用打在靶上的这个点画出一个区间,这个区间包含靶心的可能性就很大,这就是区间估计的基本思想。

2)随机变量的分布的概念

3)标准正态分布的概率密度函数和和分布函数

4)随机变量的α分位数的概念

5)标准正态的分位数表怎么得到的呢?

① 标准正态分位数表的公式推导

注意:红色方框中的公式,就是标准正态分布分位数表的由来。

② 标准正态分布分位数表

6)区间估计的定义

7)置信水平1-α的解释

对总体样本进行反复抽样(每次抽取到的样本容量都为n),那么每个样本均值都会确定一个区间(a,b),每个这样的区间要么包含总体参数,要么不包含总体参数,不能说成“以多大的概率包含总体的参数”。其中包含总体参数的区间有1-α个,而只有α个区间不包含总体参数,如下图所示(红色表示该样本构成的区间估计不包含总体参数,白色表示该样本构成的区间估计包含总体参数)。

用一个详细的案例说明:如果对总体返回抽样10000次,每次抽样的样本量都是n,每个样本都会得到一个区间估计,那么10000次抽样,就会得到10000个区间。当置信水平1-α=95%时,那么就表示10000个区间中包含总体参数的有9500个抽样样本,只有500个样本不包含总体参数,这个不包含总体参数的样本就相当于我们估计错误。这个概率只有5%。这个5%在统计学中,就叫做小概率事件,也就是说在一次随机试验中,这个小概率事件不可能发生。

即:当我们随机抽取一个样本容量为n的抽样样本,并且利用这个样本构造总体参数的置信区间,当指定了置信水平1-α=95%时,那么这个样本,基本就可以认为是包含了总体参数,也就是说,总体参数就在这个置信区间内。

8)枢轴法求置信区间的步骤(手写推导)

① 什么是枢轴量?

  • 枢轴量指的就是包含待估计参数,而不包含其它未知参数,并且分布已知的一个量。

  • 枢轴量设计到三个重要点:1、包含估计参数。2、不包含其它未知参数。3、该枢轴量的分布已知。

②以总体μ的置信区间为例(方差σ²已知),讲述枢轴量求置信区间的步骤。

6、假设检验

1)假设检验的概念

假设检验,也称为显著性检验,指通过样本的统计量,来判断与总体参数之间是否存在差异(差异是否显著)。我们事先对总体参数进行一定的假设,然后通过收集到的数据,来验证我们之前作出的假设(总体参数)是否合理。

在假设检验中,我们会建立两个完全对立的假设,分别为原假设H0备择假设H1。然后根据样本信息进行分析判断,是选择接受原假设,还是拒绝原假设(接受备择假设)。假设检验基于“反证法”。首先,我们会假设原假设为真,如果在此基础上,得出了违反逻辑与常理的结论,则表明原假设是错误的,我们就接受备择假设。否则,我们就没有充分的理由推翻原假设,此时我们选择去接受原假设。

2)假设检验的理论依据(小概率事件)

在假设检验中,违反逻辑与常规的结论,就是小概奉事件。我们认为,#小概率事件在一次试验中是不会发生的*。我们首先认为原假设为真,如果在此基础上,小概率事件发生,则我们就拒绝原假设,否则,我们就选择去接受原假设。

假设检验遵循“疑罪从无”的原则,接受原假设,并不代表原假设一定是正确的,只是我们没有充分的证据,去证明原假设是错误的,因此只能维持原假设。那么,假设检验中的小概率事件是怎么得出的呢?想想之前讲到的置信区间,是不是一切都验然开朗了?

“疑罪从无”很形象的说明的假设检验向我们传达的含义。也就是说,当我们没有充分的理由拒绝原假设,就必须接受原假设,即使原假设是错误的,但是你找不到证据证明原假设是错误的,你就只能认为原假设是对的。反之,经过一次随机试验,你如果找到了某个理由拒绝了原假设,那么原假设肯定就是错误的,这个是一定的。

3)P-Value值与显著性水平

假设检验,用来检验样本的统计量与总体参数,是否存在显著性差异。那么如何才算显著呢?我们就可以计算一个概率值(P-Value),该概率值可以认为就是支持原假设的概率,因为在假设检验中,通常原假设为等值假设,因此,P-Value也就表示样本统计量与总体参数无差异的概率。然后,我们再设定一个阈值,这个阈值叫做“显著性水平 ” (使用α表示),通常α的取值为0.05(1-α叫做置信度)。当P-Value的值大于α时,接受原假设。当P-Value的值小于α时,拒绝原假设。简单记为:p值越小越拒绝原假设。软件中一般都会展示这个p值,那里的p值,指的就是我们这里所叙述的p值。

假设检验和参数估计是推断统计的两个组成部分,都是利用样本对总体进行某种推断,但是两者进行推断的角度不同。参数估计讨论的是用样本统计量估计总体参数的一种方法,总体参数在估计前是未知的。而假设检验,则是对总体参数先提出一个假设,然后用样本信息去检验这个假设是否成立。

4)假设检验的步骤

① 根据实际问题的要求,提出原假设和备择假设。
② 给出显著性水平α以及样本容量n。
③ 确定检验统计量和拒绝域。
④ 计算出检验统计量的值,并作出决策。

5)单边检验和双边检验

6)常用的假设检验

① 单个正态总体均值的假设检验法(Z检验:方差已知)

Z检验用来判断样本均值是否与总体均值具有显著性差异。Z检验是通过正态分布的理论来推断差异发生的概率,从而比较两个均值的差异是否显著。Z检验适用于:

  • 总体呈正态分布。

  • 总体方差已知。

  • 样本容量较大。

② 案例如下

③ 有个人说:鸢尾花的平均花瓣长度为3.5cm,这种说法可靠吗?假设经过长期大量验证,鸢尾花花瓣长度总体的标准差为1.8cm,我们就可以使用Z检验来验证了。

from scipy import stats

iris = load_iris()
dt = np.concatenate([iris.data,iris.target.reshape(-1,1)],axis=1)
df = pd.DataFrame(dt,columns=iris.feature_names + ["types"])
display(df.sample(5))

mean = df["petal length (cm)"].mean()
n = len(df)
sigma = 1.8

z = (mean - 3.5) / (sigma / np.sqrt(n))
display(z)

结果如下:

④ 单个正态总体均值的假设检验法(t检验:方差未知)

t检验,与Z检验类似,用来判断样本均值是否与总体均值具有显替性差异。不过,t检验是基于t分布的。检验适用于:

  • 总体呈正态分布。

  • 总体方差未知。

  • 样本容量较小。

⑤ 案例说明

⑥ 代码演示

# 方法一
iris = load_iris()
dt = np.concatenate([iris.data,iris.target.reshape(-1,1)],axis=1)
df = pd.DataFrame(dt,columns=iris.feature_names + ["types"])
display(df.sample(5))

mean = df["petal length (cm)"].mean()
std = df["petal length (cm)"].std()
n = len(df)
display(mean,std)
t = (mean - 3.5) / (std / np.sqrt(n))
display(t)

# 方法二
from scipy import stats
stats.ttest_1samp(df["petal length (cm)"],3.5)

结果如下:

欢迎扫码关注作者的CSDN:

PS:灰常感谢黄同学的投稿,同时也欢迎关注了【可乐的数据分析之路】公众号的小伙伴们踊跃投稿哦~本文的赞赏及第二天的流量主都会给到原作者。

猜你喜欢:

快速提高Python数据分析速度的八个技巧

Python数据结构:字典那些事儿

可以用统计模型做决策吗

人生若只如初见:初识统计学


@ 号主:可乐

@ 公众号/知乎专栏/头条/简书:可乐的数据分析之路
@ 加微信(data_cola)备注:进群,拉你进可乐的数据分析交流群,每日数据分析知识总结,不定期行业经验分享


虾壳可乐
分享到朋友圈
收藏
收藏
评分

综合评分:

我的评分
Xinstall 15天会员特权
Xinstall是专业的数据分析服务商,帮企业追踪渠道安装来源、裂变拉新统计、广告流量指导等,广泛应用于广告效果统计、APP地推与CPS/CPA归属统计等方面。
20羽毛
立即兑换
一书一课30天会员体验卡
领30天VIP会员,110+门职场大课,250+本精读好书免费学!助你提升职场力!
20羽毛
立即兑换
顺丰同城急送全国通用20元优惠券
顺丰同城急送是顺丰推出的平均1小时送全城的即时快送服务,专业安全,准时送达!
30羽毛
立即兑换
虾壳可乐
虾壳可乐
发表文章144
分享数据分析的干货。
确认要消耗 羽毛购买
你真的了解参数估计和假设检验吗?吗?
考虑一下
很遗憾,羽毛不足
我知道了

我们致力于提供一个高质量内容的交流平台。为落实国家互联网信息办公室“依法管网、依法办网、依法上网”的要求,为完善跟帖评论自律管理,为了保护用户创造的内容、维护开放、真实、专业的平台氛围,我们团队将依据本公约中的条款对注册用户和发布在本平台的内容进行管理。平台鼓励用户创作、发布优质内容,同时也将采取必要措施管理违法、侵权或有其他不良影响的网络信息。


一、根据《网络信息内容生态治理规定》《中华人民共和国未成年人保护法》等法律法规,对以下违法、不良信息或存在危害的行为进行处理。
1. 违反法律法规的信息,主要表现为:
    1)反对宪法所确定的基本原则;
    2)危害国家安全,泄露国家秘密,颠覆国家政权,破坏国家统一,损害国家荣誉和利益;
    3)侮辱、滥用英烈形象,歪曲、丑化、亵渎、否定英雄烈士事迹和精神,以侮辱、诽谤或者其他方式侵害英雄烈士的姓名、肖像、名誉、荣誉;
    4)宣扬恐怖主义、极端主义或者煽动实施恐怖活动、极端主义活动;
    5)煽动民族仇恨、民族歧视,破坏民族团结;
    6)破坏国家宗教政策,宣扬邪教和封建迷信;
    7)散布谣言,扰乱社会秩序,破坏社会稳定;
    8)宣扬淫秽、色情、赌博、暴力、凶杀、恐怖或者教唆犯罪;
    9)煽动非法集会、结社、游行、示威、聚众扰乱社会秩序;
    10)侮辱或者诽谤他人,侵害他人名誉、隐私和其他合法权益;
    11)通过网络以文字、图片、音视频等形式,对未成年人实施侮辱、诽谤、威胁或者恶意损害未成年人形象进行网络欺凌的;
    12)危害未成年人身心健康的;
    13)含有法律、行政法规禁止的其他内容;


2. 不友善:不尊重用户及其所贡献内容的信息或行为。主要表现为:
    1)轻蔑:贬低、轻视他人及其劳动成果;
    2)诽谤:捏造、散布虚假事实,损害他人名誉;
    3)嘲讽:以比喻、夸张、侮辱性的手法对他人或其行为进行揭露或描述,以此来激怒他人;
    4)挑衅:以不友好的方式激怒他人,意图使对方对自己的言论作出回应,蓄意制造事端;
    5)羞辱:贬低他人的能力、行为、生理或身份特征,让对方难堪;
    6)谩骂:以不文明的语言对他人进行负面评价;
    7)歧视:煽动人群歧视、地域歧视等,针对他人的民族、种族、宗教、性取向、性别、年龄、地域、生理特征等身份或者归类的攻击;
    8)威胁:许诺以不良的后果来迫使他人服从自己的意志;


3. 发布垃圾广告信息:以推广曝光为目的,发布影响用户体验、扰乱本网站秩序的内容,或进行相关行为。主要表现为:
    1)多次发布包含售卖产品、提供服务、宣传推广内容的垃圾广告。包括但不限于以下几种形式:
    2)单个帐号多次发布包含垃圾广告的内容;
    3)多个广告帐号互相配合发布、传播包含垃圾广告的内容;
    4)多次发布包含欺骗性外链的内容,如未注明的淘宝客链接、跳转网站等,诱骗用户点击链接
    5)发布大量包含推广链接、产品、品牌等内容获取搜索引擎中的不正当曝光;
    6)购买或出售帐号之间虚假地互动,发布干扰网站秩序的推广内容及相关交易。
    7)发布包含欺骗性的恶意营销内容,如通过伪造经历、冒充他人等方式进行恶意营销;
    8)使用特殊符号、图片等方式规避垃圾广告内容审核的广告内容。


4. 色情低俗信息,主要表现为:
    1)包含自己或他人性经验的细节描述或露骨的感受描述;
    2)涉及色情段子、两性笑话的低俗内容;
    3)配图、头图中包含庸俗或挑逗性图片的内容;
    4)带有性暗示、性挑逗等易使人产生性联想;
    5)展现血腥、惊悚、残忍等致人身心不适;
    6)炒作绯闻、丑闻、劣迹等;
    7)宣扬低俗、庸俗、媚俗内容。


5. 不实信息,主要表现为:
    1)可能存在事实性错误或者造谣等内容;
    2)存在事实夸大、伪造虚假经历等误导他人的内容;
    3)伪造身份、冒充他人,通过头像、用户名等个人信息暗示自己具有特定身份,或与特定机构或个人存在关联。


6. 传播封建迷信,主要表现为:
    1)找人算命、测字、占卜、解梦、化解厄运、使用迷信方式治病;
    2)求推荐算命看相大师;
    3)针对具体风水等问题进行求助或咨询;
    4)问自己或他人的八字、六爻、星盘、手相、面相、五行缺失,包括通过占卜方法问婚姻、前程、运势,东西宠物丢了能不能找回、取名改名等;


7. 文章标题党,主要表现为:
    1)以各种夸张、猎奇、不合常理的表现手法等行为来诱导用户;
    2)内容与标题之间存在严重不实或者原意扭曲;
    3)使用夸张标题,内容与标题严重不符的。


8.「饭圈」乱象行为,主要表现为:
    1)诱导未成年人应援集资、高额消费、投票打榜
    2)粉丝互撕谩骂、拉踩引战、造谣攻击、人肉搜索、侵犯隐私
    3)鼓动「饭圈」粉丝攀比炫富、奢靡享乐等行为
    4)以号召粉丝、雇用网络水军、「养号」形式刷量控评等行为
    5)通过「蹭热点」、制造话题等形式干扰舆论,影响传播秩序


9. 其他危害行为或内容,主要表现为:
    1)可能引发未成年人模仿不安全行为和违反社会公德行为、诱导未成年人不良嗜好影响未成年人身心健康的;
    2)不当评述自然灾害、重大事故等灾难的;
    3)美化、粉饰侵略战争行为的;
    4)法律、行政法规禁止,或可能对网络生态造成不良影响的其他内容。


二、违规处罚
本网站通过主动发现和接受用户举报两种方式收集违规行为信息。所有有意的降低内容质量、伤害平台氛围及欺凌未成年人或危害未成年人身心健康的行为都是不能容忍的。
当一个用户发布违规内容时,本网站将依据相关用户违规情节严重程度,对帐号进行禁言 1 天、7 天、15 天直至永久禁言或封停账号的处罚。当涉及欺凌未成年人、危害未成年人身心健康、通过作弊手段注册、使用帐号,或者滥用多个帐号发布违规内容时,本网站将加重处罚。


三、申诉
随着平台管理经验的不断丰富,本网站出于维护本网站氛围和秩序的目的,将不断完善本公约。
如果本网站用户对本网站基于本公约规定做出的处理有异议,可以通过「建议反馈」功能向本网站进行反馈。
(规则的最终解释权归属本网站所有)

我知道了
恭喜你~答对了
+5羽毛
下一次认真读哦
成功推荐给其他人
+ 10羽毛
评论成功且进入审核!审核通过后,您将获得10羽毛的奖励。分享本文章给好友阅读最高再得15羽毛~
(羽毛可至 "羽毛精选" 兑换礼品)
好友微信扫一扫
复制链接