很可惜 T 。T 您现在还不是作者身份,不能自主发稿哦~
如有投稿需求,请把文章发送到邮箱tougao@appcpx.com,一经录用会有专人和您联系
咨询如何成为春羽作者请联系:鸟哥笔记小羽毛(ngbjxym)
存量竞争市场中,企业需要通过精细化运营提升客户价值与 ROI。数据智能作为先进生产力,在搜索、广告、推荐业务方面已经足够成熟,那么它是如何助力销售提升效能呢?本文将详细介绍。
线索是企业重要的生产资料,围绕线索流转可以将销售划分为线索筛选、线索分配、线索跟进三个环节。
1、线索筛选
好线索和差线索的转化率相差 10 倍以上,因此线索质量是影响销售效能的关键因素。对线索进行质量评分,基于评分进行分层运营,可以有效提升销售效能。
2、线索分配
线索质量和销售能力都会影响销售效能。做好线索分配,避免好销售被差线索浪费、好线索被差销售浪费,同样可以提升销售效能。
基于线索评分和销售分档采取好分好(好销售分好线索)、好分多(好销售分多线索)的方法,能充分发挥好销售、好线索的价值,并激励销售变得更好。
在采取上述方法时要注意销售对线索的偏好。同一档次的销售也会存在对线索偏好的差异。比如,某公司通过观察同一档次销售在不同年级线索上的跟进情况发现,销售 A 不擅长和研究生学历的用户沟通,与初中学历的用户沟通却很顺畅,但销售 B 却非常擅长和研究生学历的用户沟通。
因此,考虑销售对线索的偏好后,可以把线索和销售配对进行评分,将线索销售配对评分和销售每天的线索配额结合再进行线索分配,就会产生多种分配方式,可以是简单的规则匹配,也可以是理想的全局最优分配方法。
3、线索跟进
线索分配给销售后,进入销售个人池。销售个人池有当日的新线索、公海回捞的老线索以及历史积累的线索。企业需要判断线索跟进的顺序及重要程度。举个例子,某公司在应用智能技术对之前一个月的线索跟进情况进行线索评分,对线索进行质量打分并划分为 10 档,发现最高档线索的跟进率很高,但还有一定提升空间;但同时,销售在低质量线索上浪费了不少精力。区分销售个人池线索质量,帮助销售把精力聚焦在好线索上,避免精力浪费,可以大幅提升销售效能。
对于线索评分,过去常常用规则来做,依赖专家经验和人工总结,对各类特征设置加减权重。规则评分的好处是启动简单,但也同时存在着三大缺点:一是能应用的规则有限,评分不精准。二是能利用的信息有限,比如语音、聊天等非结构化的信息无法充分利用,也难以利用销售对线索的偏好信息,这两者都会导致评分不够精准。三是在数据环境发生变化时候,规则迭代优化依赖人工做数据分析和策略,费时费力。
线索评分本质上是转化概率预测,这种概率预测技术应用非常广泛。比如,个性化推荐系统、广告投放系统背后都会使用点击概率预测。同理,企业可以用历史上转化和未转化的数据作为正负样本,应用机器学习分类算法训练预测模型,然后对“待跟进线索”或“线索 & 销售配对”进行预测,计算出每一条线索的转化概率。这个转化概率可以是线索最终购买概率,也可以是电话接通概率,可以是销售漏斗上任意一个环节的概率。
这个过程中,机器学习模型可以应用所有的信息来学习,比如用户行为、CRM 销售跟进记录、线索来源等,可以利用语音识别和自然语言处理技术来理解销售和用户的沟通数据,同时还可以利用隐私计算来利用第三方的数据,数据越丰富,预测越精准。
对于线索分配,企业可以利用规则或者贪心分配,但这都不会取得全局最优效果。什么是贪心分配?即结合销售的线索配额按照线索的先后顺序,每次都选择剩余配对评分最高的销售,如下图所示,转化概率总和是 1.35,离最优结果 1.6 还有一定距离。
要找到最优解,就要全局考虑。从技术上看,这属于运筹优化算法中的任务指派问题,例如打车软件给司机派单。行业中也有一些开源的运筹优化算法和框架,比如 Google 开源的 Ortools 使找到最优解成为可能。
综上,企业应用大数据和机器学习、运筹优化技术进行线索智能评分、智能分配,实现线索优选、优配,能够有效提升销售效能。
我们可以将智能技术应用的优势总结如下:
相比规则评分、规则分配,智能技术能综合全域数据和人工智能技术,评分更精准,能更好地支持销售运营。
根据业务反馈自动训练、更新,自适应环境变化。
数据越完备,预测越精准,数据变成了生产力,企业可以通过数据建设来持续提升预测精准性。
应用运筹优化技术进行线索分配,可以取得全局最优,并自动适应销售人员变化。
而与此同时,我们也需要清晰地认识到,企业应用智能技术面临的挑战有四点:
数据建设系统。智能技术应用以数据为核心,需要有良好的数据基础,因此需要数据采集 & 存储 & 分析系统做支撑。
智能技术平台。虽然行业中有很多开源技术框架,但打通数据流和应用结合、特征 & 样本管理等仍然是一个大工程。
智能技术人才。优秀的、能做出成效的智能技术人才依旧稀缺且昂贵。
实践经验。相比个性化推荐,销售业务链路更长、过程更难数据化和量化,且涉及到销售人员管理和激励,非常复杂。智能技术业务关联度更高、数据来源也更复杂,且涉及到和销售团队的配合,因此对技术团队和业务团队的跨界经验要求很高。
针对数据智能助力销售效能提升面临的挑战,在实际服务客户的过程中,我们总结了如下实践认知:
1、数据采集要完整,时间要对齐,避免时序混乱
(1)数据完备。包括用户行为数据、CRM 数据、用户来源和属性数据、销售跟进数据等。
(2)跟进记录完备,时间对齐。App 合规采集的用户行为数据一般不会出错,但线索分配、跟进等记录因为涉及到销售管理和 CRM 系统,容易出现缺失或时序混乱,从而影响模型效果,企业务必最初就做好数据洞察,并尽早解决数据错误。
(3)要避免特征穿越。CRM 中一些字段是销售跟进甚至成交后才填写的,如果缺少属性变更时间及对应的时间戳,很容易出现特征穿越,造成模型效果好但实际应用差的情况。
(4)在数据治理之前,建议先和销售人员沟通,了解其判断线索质量所需要的数据,做针对性的数据治理。
2、模型训练环节,最重要的是确定应用场景和目标线索
如何判断应用场景和目标线索?通常情况下,其判断标准如下:
(1)场景和目标线索的预测是否对销售有帮助?如果销售跟进线索的成本非常低,那么做线索质量评分的价值就不大,因为 ROI 太低。
(2)可行性如何?比如对半年内没有活跃的线索进行质量区分难度很大。
(3)如何做?选用什么样的数据?比如半年内没有活跃的线索,大概率要用到第三方数据辅助判断,样本构建和模型训练、模型分析要相对应。
3、选定合适的指标
相比 AUC、准确率 & 召回率等指标,LIFT 提升度更适配业务度量.
LIFT 提升度是对评分从高到低排序后各个分档的累计转化率相对基准转化率的比值,体现了模型 Top N 的数据对目标转化的召回率,以及相对平均采样的优势。
4、务必做 A/B 测试验证
对于转化周期长的实施需求,做好 A/B 测试能够帮助企业量化说明应用价值。
利用 A/B 测试进行线索筛选,是指不针对销售而是线索做 A/B 分组,并采用不同的线索筛选方式;对于私海标注,则线索不分组,销售根据有无私海标注分组;对于线索优配,则线索、销售都分组,做 A/B 测试效果对比。
在模型应用阶段,过程数据采集和分析非常重要,一方面便于效果归因和改进,另一方面能帮助企业尽早发现问题。
通过实践和行业调研,我们总结了智能技术应用带来的收益:
线索筛选在历史线索回捞场景下会带来转化率提升。具体提升数字以及持续时间跟历史线索规模和沉淀历史线索的速度有关。
结合线索质量、销售能力,以及销售对线索的偏好进行线索分配,从而实现整体最优,线索整体转化率大幅提升。
私海线索质量区分能全面提升私海优质线索转化率。
5、线索优选 & 优配是技术问题,同时也是业务问题和管理问题
(1)企业要循序渐进开展工作,避免影响业务和团队管理。循序渐进要求从效果明确、对团队管理和业务影响比较小的开始调整。比如历史线索回捞。历史线索回捞不会对销售团队管理产生影响且产生效果不依赖外部,因此是最佳的切入点。然后是私海高质量线索标注以及低质线索排除。做好这两点后,基本能够证明模型有效,并且已经和业务方磨合好。接下来就可以开展基于销售分档和线索分档的线索优配,其解释性强、可控性好,在这个基础上销售团队管理的调整比较容易,比如绩效考核方式的调整。取得了效果以后,再用算法做线索分配,实现效果覆盖。
(2)满足销售业务和团队管理的规则约束。销售团队管理有诸多约束,比如线索分配要公平,不能把高质量线索全都分配给好销售。即使用算法做线索分配,也需要满足销售业务和团队管理的规则约束。
(3)要有相当规模的销售团队和线索规模,才能发挥智能技术的杠杆效应。销售团队规模太小,或线索量太小时 ROI 太低,不值得实施线索优选和优配。
实事求是地看,数据智能落地的过程很难达到 100% 成功率,一方面因为数据不够完整;另一方面受特征穿越、建模后目标线索调整等的影响,会导致项目过程曲折。因此企业应用智能技术前要慎重考虑,规避风险。
本文为作者独立观点,不代表鸟哥笔记立场,未经允许不得转载。
《鸟哥笔记版权及免责申明》 如对文章、图片、字体等版权有疑问,请点击 反馈举报
Powered by QINGMOB PTE. LTD. © 2010-2022 上海青墨信息科技有限公司 沪ICP备2021034055号-6
我们致力于提供一个高质量内容的交流平台。为落实国家互联网信息办公室“依法管网、依法办网、依法上网”的要求,为完善跟帖评论自律管理,为了保护用户创造的内容、维护开放、真实、专业的平台氛围,我们团队将依据本公约中的条款对注册用户和发布在本平台的内容进行管理。平台鼓励用户创作、发布优质内容,同时也将采取必要措施管理违法、侵权或有其他不良影响的网络信息。
一、根据《网络信息内容生态治理规定》《中华人民共和国未成年人保护法》等法律法规,对以下违法、不良信息或存在危害的行为进行处理。
1. 违反法律法规的信息,主要表现为:
1)反对宪法所确定的基本原则;
2)危害国家安全,泄露国家秘密,颠覆国家政权,破坏国家统一,损害国家荣誉和利益;
3)侮辱、滥用英烈形象,歪曲、丑化、亵渎、否定英雄烈士事迹和精神,以侮辱、诽谤或者其他方式侵害英雄烈士的姓名、肖像、名誉、荣誉;
4)宣扬恐怖主义、极端主义或者煽动实施恐怖活动、极端主义活动;
5)煽动民族仇恨、民族歧视,破坏民族团结;
6)破坏国家宗教政策,宣扬邪教和封建迷信;
7)散布谣言,扰乱社会秩序,破坏社会稳定;
8)宣扬淫秽、色情、赌博、暴力、凶杀、恐怖或者教唆犯罪;
9)煽动非法集会、结社、游行、示威、聚众扰乱社会秩序;
10)侮辱或者诽谤他人,侵害他人名誉、隐私和其他合法权益;
11)通过网络以文字、图片、音视频等形式,对未成年人实施侮辱、诽谤、威胁或者恶意损害未成年人形象进行网络欺凌的;
12)危害未成年人身心健康的;
13)含有法律、行政法规禁止的其他内容;
2. 不友善:不尊重用户及其所贡献内容的信息或行为。主要表现为:
1)轻蔑:贬低、轻视他人及其劳动成果;
2)诽谤:捏造、散布虚假事实,损害他人名誉;
3)嘲讽:以比喻、夸张、侮辱性的手法对他人或其行为进行揭露或描述,以此来激怒他人;
4)挑衅:以不友好的方式激怒他人,意图使对方对自己的言论作出回应,蓄意制造事端;
5)羞辱:贬低他人的能力、行为、生理或身份特征,让对方难堪;
6)谩骂:以不文明的语言对他人进行负面评价;
7)歧视:煽动人群歧视、地域歧视等,针对他人的民族、种族、宗教、性取向、性别、年龄、地域、生理特征等身份或者归类的攻击;
8)威胁:许诺以不良的后果来迫使他人服从自己的意志;
3. 发布垃圾广告信息:以推广曝光为目的,发布影响用户体验、扰乱本网站秩序的内容,或进行相关行为。主要表现为:
1)多次发布包含售卖产品、提供服务、宣传推广内容的垃圾广告。包括但不限于以下几种形式:
2)单个帐号多次发布包含垃圾广告的内容;
3)多个广告帐号互相配合发布、传播包含垃圾广告的内容;
4)多次发布包含欺骗性外链的内容,如未注明的淘宝客链接、跳转网站等,诱骗用户点击链接
5)发布大量包含推广链接、产品、品牌等内容获取搜索引擎中的不正当曝光;
6)购买或出售帐号之间虚假地互动,发布干扰网站秩序的推广内容及相关交易。
7)发布包含欺骗性的恶意营销内容,如通过伪造经历、冒充他人等方式进行恶意营销;
8)使用特殊符号、图片等方式规避垃圾广告内容审核的广告内容。
4. 色情低俗信息,主要表现为:
1)包含自己或他人性经验的细节描述或露骨的感受描述;
2)涉及色情段子、两性笑话的低俗内容;
3)配图、头图中包含庸俗或挑逗性图片的内容;
4)带有性暗示、性挑逗等易使人产生性联想;
5)展现血腥、惊悚、残忍等致人身心不适;
6)炒作绯闻、丑闻、劣迹等;
7)宣扬低俗、庸俗、媚俗内容。
5. 不实信息,主要表现为:
1)可能存在事实性错误或者造谣等内容;
2)存在事实夸大、伪造虚假经历等误导他人的内容;
3)伪造身份、冒充他人,通过头像、用户名等个人信息暗示自己具有特定身份,或与特定机构或个人存在关联。
6. 传播封建迷信,主要表现为:
1)找人算命、测字、占卜、解梦、化解厄运、使用迷信方式治病;
2)求推荐算命看相大师;
3)针对具体风水等问题进行求助或咨询;
4)问自己或他人的八字、六爻、星盘、手相、面相、五行缺失,包括通过占卜方法问婚姻、前程、运势,东西宠物丢了能不能找回、取名改名等;
7. 文章标题党,主要表现为:
1)以各种夸张、猎奇、不合常理的表现手法等行为来诱导用户;
2)内容与标题之间存在严重不实或者原意扭曲;
3)使用夸张标题,内容与标题严重不符的。
8.「饭圈」乱象行为,主要表现为:
1)诱导未成年人应援集资、高额消费、投票打榜
2)粉丝互撕谩骂、拉踩引战、造谣攻击、人肉搜索、侵犯隐私
3)鼓动「饭圈」粉丝攀比炫富、奢靡享乐等行为
4)以号召粉丝、雇用网络水军、「养号」形式刷量控评等行为
5)通过「蹭热点」、制造话题等形式干扰舆论,影响传播秩序
9. 其他危害行为或内容,主要表现为:
1)可能引发未成年人模仿不安全行为和违反社会公德行为、诱导未成年人不良嗜好影响未成年人身心健康的;
2)不当评述自然灾害、重大事故等灾难的;
3)美化、粉饰侵略战争行为的;
4)法律、行政法规禁止,或可能对网络生态造成不良影响的其他内容。
二、违规处罚
本网站通过主动发现和接受用户举报两种方式收集违规行为信息。所有有意的降低内容质量、伤害平台氛围及欺凌未成年人或危害未成年人身心健康的行为都是不能容忍的。
当一个用户发布违规内容时,本网站将依据相关用户违规情节严重程度,对帐号进行禁言 1 天、7 天、15 天直至永久禁言或封停账号的处罚。当涉及欺凌未成年人、危害未成年人身心健康、通过作弊手段注册、使用帐号,或者滥用多个帐号发布违规内容时,本网站将加重处罚。
三、申诉
随着平台管理经验的不断丰富,本网站出于维护本网站氛围和秩序的目的,将不断完善本公约。
如果本网站用户对本网站基于本公约规定做出的处理有异议,可以通过「建议反馈」功能向本网站进行反馈。
(规则的最终解释权归属本网站所有)