如何做好活跃用户的运营?
编辑导语:用户运营是一个比较冗长的过程,我们需要对用户进行管理和活跃,以及最后的转化;并且如今的“精细化运营”也是运营人员的一种方式,可以更好的活跃和转化;本文作者分享了关于活跃用户的分析,我们一起来了解一下。
“活跃用户怎么精细化运营?用户分层和用户分群到底有啥区别?口号喊了千万遍,精细化何时能实现?”
新用户体验到产品的核心价值后会花费更多的时间和精力在产品上,逐渐成为产品的活跃用户,活跃用户是比较认可产品的价值、愿意为产品买单或背书的用户,他们不仅会贡献自己的价值,对于产品的品牌建设也非常关键,所以活跃用户运营的重要性不言而喻。
活跃用户的运营是个很大的话题,今天只是尝试从一些特定的角度来探讨这个问题,虽然不能一次性把这个话题讲完讲透,但是希望能抛砖引玉,给大家一些思路和思考。
过去市场更关注如何大规模、低成本获客,随着人口红利逐渐消失,获客成本越来越高,现在,越来越多的人关注如何提升单体用户价值,把钱花在刀刃上,让不同的用户享受到不同的服务,让用户感受到温度,让产品有灵魂。
于是,“精细化运营”诞生了,提到用户运营,就逃不开“精细化”,它好像已经成为运营人的基本操守,跟别人交(chui)流(niu)的时候少了这些词汇都不好意思说你是搞运营的,但精细化运营到底是什么?又该怎么落地呢?
所谓精细化,第一个就是精准,第二个就是细分,两者相辅相成,缺一不可,想想要做到精准就要进行细分,胡子眉毛一把抓永远留不住用户,最理想的情况就是千人千面。但是如何对用户进行细分呢?这里介绍两种很常用的方法:用户分层和用户分群。
用户分层vs用户分群,看似差不多,但在定位和目标上还是有明显差异的。用户分层,是基于大方向的划分,你希望用户朝什么核心目标努力,而用户分群,则是将他们划分为更细的粒度,便于针对性运营提高效果,两者相辅相成。
用户分层中的层就是层次层级,比如我们把用户从注册开始使用产品成为我们的新用户开始,到成为活跃用户,再到频繁活跃或者是付费的忠诚用户,再到后期由于其他竞品的出现或者本身产品功能不再满足需求时用户开始沉默到最终流失;这一个生命周期也是一个层次,就像如图所示,那么有了这个分层,我们就可以比较清晰的知道当前用户的组成结构,各生命周期用户成长是否健康。
那这样是不是就足够了呢,我们知道很多领域都存在着二八原则,即20%的人贡献了80%的营收,那么对于忠诚用户来说,这其中有部分是人均消费较低的平民群体,也有挥金如土的金主爸爸,对于这样的情况我们就要对忠诚用户在进行细化,分成更精细的组。
再比如说,最近产品上新上了信用引导,想看看这个对于新用户留存是否有帮助,或者是开展了一场运营活动,看看核心指标有没有拉升,这个时候就需要对用户进行进一步细分,出现了分群;分群是对分层的进一步细分,分群后便于针对用户进行精准地运营动作。
常用的用户分群的方法有我们熟悉的RFM、基于数据挖掘的Kmeans等等。前者是用最近一次消费时间,消费频次和消费金额来衡量用户价值,将用户进行分群,分成高价值用户,一般价值用户,重要挽留用户等等,但是RFM模型的建立需要专家经验,也就是说指标的选择以及各指标阈值的确定都必须有业务sense,而不是拍脑袋决定的。
Kmeans主要是通过数据挖掘的方式找出有相似特点的用户,实现物以类聚人以群分,用户进行过聚类后通过分析各组的特点也可以针对性地进行运营。
下面我们通过一个案例将用户分层的理论落地,案例仅为便于说明问题而虚构。首先我们假设活跃用户数的变化趋势如下图,乍一看每月的活跃用户数在持续增长,看似还不错。
但是我们要警惕的是虚荣指标给我们的错觉,我们可以把累计的用户数放进来,也就是截止到当前的累计用户数,活跃用户数除以累计用户数得到用户的活跃度,表征的是活跃用户占整体的比例,这样一看发现好像比例在逐渐减小。
我们可以继续细分,可以根据累计用户数计算出新增用户数,发现活跃用户中很大比例是新增的用户。
相似地,我们可以把累计用户分为新用户和老用户,把活跃用户分为新活跃用户和老活跃用户,相似的,可以得到新老用户的活跃度,我们发现老用户的活跃度更低了。
我们想要看老用户中到底是怎么了?我们把活跃用户再进行细分,分成活跃、不活跃用户2大类,活跃用户我们包括了新活跃用户和老用户活跃,然后老用户活跃我们又分成了一般活跃用户,忠诚用户和回流用户,不活跃用户主要包括沉默用户和流失用户。
我们发现老用户活跃主要是因为一般活跃和忠诚用户的活跃都很少,但是新用户很多,说明我们需要做好新用户引导和留存,同时促使用户向忠诚用户转化。
进而可以通过对每个月用户进行细分,分析同一月份不同层级的用户构成,从而判断用户成长的健康状况。
但是为了更加清晰,我们按照活跃、不活跃分别看用户的构成,这样的话能更清楚地看到各层用户的健康状态。
用户是在产品的生命周期中不断成长的,我们除了会看某个时间点用户的活跃组成情况,我们可能还要关注用户的成长路径:每天有多少新增用户变成了活跃用户?有多少活跃用户变得不活跃?有多少忠诚用户变得不活跃?又有多少流失用户被我们召回等,这样有助于我们更直观地分析用户的去向,更精准地定位问题,从而针对性地进行动作。
比如可以通过桑基图的形式展示某产品1月份新增用户在接下来的成长路径,发现在2月份有相当比例的用户没有再活跃而变成沉默用户,需要及时通过运营手段触达这部分用户,以防止其在3月份流失。
相似地,对于某段时间的活跃用户或者沉默用户,也可以通过类似的方式进行监控,以便及时了解用户的去向,及时进行干预,以防用户流失。
以上通过一个案例讲述了用户分层的思路和方法,下面再通过一个案例介绍用户分群的应用。用户分群中有一些比较常用的方法;比如可以通过经验型的RFM模型,从不同维度对用户进行评价,进而划分成不同价值的用户进行运营;或者通过大数据挖掘的聚类算法等,挖掘大量用户的相似特征实现物以类聚人以群分的目的。
这些方法已经很成熟了,而且很多人已经耳熟能详了,就不在这里赘述了。今天给大家介绍另外一种比较重要的分群方法—同期群分析,所谓同期群分析就是针对分层用户的进一步细分,对处于相同生命周期的用户进行分群,看相似分群的效果。
一般来说,同期群需要满足:处于相同生命周期,比如研究的都是新用户,或者具有共同的行为用户,这样群内我们可以看时间上的变化趋势,不同群之间对比可以看效果,一般用来衡量产品或者运营优化方案前后的效果;比如2月份我们上了一个新功能,导致3月、4月的新用户留存明显好于1/2月,通过对爹带钱1、2月的新用户留存和迭代后3、4月新用户留存的同期群对比发现优化方案效果显著。
我们通过一个案例来说明同期群分析的具体应用,假设我们拿到某个店铺的销售数据,通过数据发现,虽然每个月的销售额和客户数持续增长,但客户的ARPU却在持续下降,客户的购买力是在逐渐减弱么?
为了探究这个原因,我们先把客户进行分层,分为新老用户,然后分别对新老用户进行同期群分析。
我们首先对1-4月份的新用户的ARPU进行同期群分析,即取每个月的新增用户作为一个同期群,研究不同同期群在首月及以后的ARPU变化情况,发现随着时间的推移,1-4月份新增的用户首月的ARPU在不断提高,说明新用户的购买力是在不断增强的,那就很有可能是老用户的购买力下降了。
相似地,我们对老用户进行同期群分析,发现随着时间的推移,老用户的ARPU在逐渐降低,是老用户的购买力下降导致整体用户的ARPU下降。
本文尝试从活跃用户的运营出发,探讨如何将活跃用户的精细化运营落地,以及实现精细化运营的2种重要的方法—用户分层和用户分群,并分别通过案例逐步展示了2种方法应用的详细步骤,希望通过理论结合案例的方式将人人吹捧却又鲜有实现的精细化运营落地。
但不可否认的是,活跃用户的运营绝不是说掌握了这些方法就可以高枕无忧,用户的认知和需求都在随着互联网的高速发展而不断变化。
我们不能指望通过一些固定的方法套路就能搞定用户,一切方法套路都是为了尽可精准地了解用户,为用户持续提供有灵魂的产品、高质量的服务才是让产品长久不衰最高端的方法套路。
本文由 @大数据分析与运营星球 原创发布于人人都是产品经理,未经作者许可,禁止转载。
题图来自Unsplash,基于CC0协议。
本文系作者:
小庄
授权发表,鸟哥笔记平台仅提供信息存储空间服务。
本文为作者独立观点,不代表鸟哥笔记立场,未经允许不得转载。
《鸟哥笔记版权及免责申明》
如对文章、图片、字体等版权有疑问,请点击
反馈举报
我们致力于提供一个高质量内容的交流平台。为落实国家互联网信息办公室“依法管网、依法办网、依法上网”的要求,为完善跟帖评论自律管理,为了保护用户创造的内容、维护开放、真实、专业的平台氛围,我们团队将依据本公约中的条款对注册用户和发布在本平台的内容进行管理。平台鼓励用户创作、发布优质内容,同时也将采取必要措施管理违法、侵权或有其他不良影响的网络信息。
一、根据《网络信息内容生态治理规定》《中华人民共和国未成年人保护法》等法律法规,对以下违法、不良信息或存在危害的行为进行处理。
1. 违反法律法规的信息,主要表现为:
1)反对宪法所确定的基本原则;
2)危害国家安全,泄露国家秘密,颠覆国家政权,破坏国家统一,损害国家荣誉和利益;
3)侮辱、滥用英烈形象,歪曲、丑化、亵渎、否定英雄烈士事迹和精神,以侮辱、诽谤或者其他方式侵害英雄烈士的姓名、肖像、名誉、荣誉;
4)宣扬恐怖主义、极端主义或者煽动实施恐怖活动、极端主义活动;
5)煽动民族仇恨、民族歧视,破坏民族团结;
6)破坏国家宗教政策,宣扬邪教和封建迷信;
7)散布谣言,扰乱社会秩序,破坏社会稳定;
8)宣扬淫秽、色情、赌博、暴力、凶杀、恐怖或者教唆犯罪;
9)煽动非法集会、结社、游行、示威、聚众扰乱社会秩序;
10)侮辱或者诽谤他人,侵害他人名誉、隐私和其他合法权益;
11)通过网络以文字、图片、音视频等形式,对未成年人实施侮辱、诽谤、威胁或者恶意损害未成年人形象进行网络欺凌的;
12)危害未成年人身心健康的;
13)含有法律、行政法规禁止的其他内容;
2. 不友善:不尊重用户及其所贡献内容的信息或行为。主要表现为:
1)轻蔑:贬低、轻视他人及其劳动成果;
2)诽谤:捏造、散布虚假事实,损害他人名誉;
3)嘲讽:以比喻、夸张、侮辱性的手法对他人或其行为进行揭露或描述,以此来激怒他人;
4)挑衅:以不友好的方式激怒他人,意图使对方对自己的言论作出回应,蓄意制造事端;
5)羞辱:贬低他人的能力、行为、生理或身份特征,让对方难堪;
6)谩骂:以不文明的语言对他人进行负面评价;
7)歧视:煽动人群歧视、地域歧视等,针对他人的民族、种族、宗教、性取向、性别、年龄、地域、生理特征等身份或者归类的攻击;
8)威胁:许诺以不良的后果来迫使他人服从自己的意志;
3. 发布垃圾广告信息:以推广曝光为目的,发布影响用户体验、扰乱本网站秩序的内容,或进行相关行为。主要表现为:
1)多次发布包含售卖产品、提供服务、宣传推广内容的垃圾广告。包括但不限于以下几种形式:
2)单个帐号多次发布包含垃圾广告的内容;
3)多个广告帐号互相配合发布、传播包含垃圾广告的内容;
4)多次发布包含欺骗性外链的内容,如未注明的淘宝客链接、跳转网站等,诱骗用户点击链接
5)发布大量包含推广链接、产品、品牌等内容获取搜索引擎中的不正当曝光;
6)购买或出售帐号之间虚假地互动,发布干扰网站秩序的推广内容及相关交易。
7)发布包含欺骗性的恶意营销内容,如通过伪造经历、冒充他人等方式进行恶意营销;
8)使用特殊符号、图片等方式规避垃圾广告内容审核的广告内容。
4. 色情低俗信息,主要表现为:
1)包含自己或他人性经验的细节描述或露骨的感受描述;
2)涉及色情段子、两性笑话的低俗内容;
3)配图、头图中包含庸俗或挑逗性图片的内容;
4)带有性暗示、性挑逗等易使人产生性联想;
5)展现血腥、惊悚、残忍等致人身心不适;
6)炒作绯闻、丑闻、劣迹等;
7)宣扬低俗、庸俗、媚俗内容。
5. 不实信息,主要表现为:
1)可能存在事实性错误或者造谣等内容;
2)存在事实夸大、伪造虚假经历等误导他人的内容;
3)伪造身份、冒充他人,通过头像、用户名等个人信息暗示自己具有特定身份,或与特定机构或个人存在关联。
6. 传播封建迷信,主要表现为:
1)找人算命、测字、占卜、解梦、化解厄运、使用迷信方式治病;
2)求推荐算命看相大师;
3)针对具体风水等问题进行求助或咨询;
4)问自己或他人的八字、六爻、星盘、手相、面相、五行缺失,包括通过占卜方法问婚姻、前程、运势,东西宠物丢了能不能找回、取名改名等;
7. 文章标题党,主要表现为:
1)以各种夸张、猎奇、不合常理的表现手法等行为来诱导用户;
2)内容与标题之间存在严重不实或者原意扭曲;
3)使用夸张标题,内容与标题严重不符的。
8.「饭圈」乱象行为,主要表现为:
1)诱导未成年人应援集资、高额消费、投票打榜
2)粉丝互撕谩骂、拉踩引战、造谣攻击、人肉搜索、侵犯隐私
3)鼓动「饭圈」粉丝攀比炫富、奢靡享乐等行为
4)以号召粉丝、雇用网络水军、「养号」形式刷量控评等行为
5)通过「蹭热点」、制造话题等形式干扰舆论,影响传播秩序
9. 其他危害行为或内容,主要表现为:
1)可能引发未成年人模仿不安全行为和违反社会公德行为、诱导未成年人不良嗜好影响未成年人身心健康的;
2)不当评述自然灾害、重大事故等灾难的;
3)美化、粉饰侵略战争行为的;
4)法律、行政法规禁止,或可能对网络生态造成不良影响的其他内容。
二、违规处罚
本网站通过主动发现和接受用户举报两种方式收集违规行为信息。所有有意的降低内容质量、伤害平台氛围及欺凌未成年人或危害未成年人身心健康的行为都是不能容忍的。
当一个用户发布违规内容时,本网站将依据相关用户违规情节严重程度,对帐号进行禁言 1 天、7 天、15 天直至永久禁言或封停账号的处罚。当涉及欺凌未成年人、危害未成年人身心健康、通过作弊手段注册、使用帐号,或者滥用多个帐号发布违规内容时,本网站将加重处罚。
三、申诉
随着平台管理经验的不断丰富,本网站出于维护本网站氛围和秩序的目的,将不断完善本公约。
如果本网站用户对本网站基于本公约规定做出的处理有异议,可以通过「建议反馈」功能向本网站进行反馈。
(规则的最终解释权归属本网站所有)