随着数据分析这两年的火热,作为产品/运营不懂点数据分析,特别是在供需市场趋于平衡甚至过于饱和的情况下,如何让自己的产品脱颖而出,获得更大的用户增长?如何做好一次运营活动?......
最近在学习一些数据分析方法,结合自己的一些心得,梳理出以下数据分析文章,读完本文大概需要8-10分钟。
一、什么是数据分析
数据分析是指用适当的统计方法对收集来的数据进行分析,以求最大化的发挥数据的价值。数据如同金钱一样,本身并没有太多的价值,而正是由于使用分析方法的存在,利用分析方法来得出一定的结论与发现问题,从而挖掘其巨大的价值。
二、为什么要做数据分析
很多时候,VC投资需要看数据,做投资决策;公司产品/运营需要做迭代的依据... 数据需求的可能会来自多个方面,总体而言,数据分析的原因主要有以下四种:
1、驱动产品迭代
用户使用产品的真实轨迹是怎样的?为什么他们会这么做,有没有更简便的流程,以帮助我们作出优化决策?也可以分析产品过往的数据,来洞悉问题,驱动有目标的产品迭代。
2、深度需求分析
对用户所处马斯诺几个层面的需求,用数据来支撑;对交互需求,用数据佐证;对公司层面的需求,通过数据验证合理性。
3、驱动运营决策
产品新功能上线后效果怎么样?新功能的用户活跃度、用户留存率的变化?A方案和B方案哪个更好?诸如此类的问题,评判一个问题的好坏,比较可靠的恐怕就是数据了。感性的定义很多时候往往会产生大量的不必要的争执。
4、驱动运营决策
针对商业机会的评估,必要的需求调研及市场调研显得尤为关键。一个新市场是否值得介入?一个新项目是否值得投资?是否可以收购某公司等等?
三、如何做数据分析
viri.png
1、数据采集
原则1:全量而非抽样
采集多种数据来源,前端与后端、业务数据库的全面采集。前端有网页端与APP客户端等,后端采集用来补充前端行为事件所无法采集到的数据。
原则2:多维细分
针对客户行为事件实现5W1H的全面细化,将行为中的什么人、什么时候、从哪里、什么原因、什么事情、如何做的行为轨迹全面记录下来,并进行细化,人(who)可以从注册账号、性别、年龄、个人成长阶段等细分;时间(when)可以从起始时间、结束时间等细分;从哪里(where)可以从IP、位置信息、运营商、OS、机型、IMEI、网络接入方式(2G/3G/4G/WIFI)等细分;原因(why)可以从爱好、需求层级等细分;事情(what)可以从主题、步骤等细分。行为事件与维度的结合,就能得出需要的指标,比如用户在什么地域下的订单......
目前数据采集(埋点)方式主要有三种:
第一种:使用第三方统计分析标准SDK接入到应用中
第二种:使用无埋点方式
第三种:自己开发,精细化运营与产品决策
2、数据采集
搭建数据指标模型大致要考虑以下三大要素:
a.打通行为数据与业务数据;
b.回归关键数据指标
c.多维度考虑数据可行性
第一关键指标方法
找出第一关键重要指标,然后衍生于子指标,比如:电商销售额
如果你想提升销售额,要么提升买家数,要么提升客单价。
销售额=买家数x客单价
销售额=流量x转化率x客单价
在到达商品详情页中,这个还可以衍生为:
销售量=商详uv x 下单率 x 付款率x客单价
销售量= 活动展现 x 活动转化率x 下单率x付款率x客单价
各阶段指标侧重:
各阶段
● MVP阶段(验证):验证可行性与以用户留存率为目标,定性分析,这个阶段本身并没有多少数据可言(数据型产品)除外。
● 增长阶段(跨越鸿沟):大多数公司都没能到这个阶段,增长阶段的数据分析需要适当的去对应相应的数据产品分析师,或者使用更深度的数据工具来做相应的决策。
可以分为两个层面
1.留存阶段,主要以留存率为指标(次日留存、7日留存、15日留存、30日留存率等);
2.引荐阶段,主要考虑病毒系数与病毒周期:平均一个用户能带来多少个新用户。所以当病毒系数大于1时,信息将会不断扩散,而总传播人数是发散的。相反,当病毒系数小于1时,总传播人数是收敛的,以及NPS(净推荐值)。
● 平台期(激活转化):有专门的数据分析师、工程师,团队对数据分析更加深入。主要关注的是平台用户的活跃度、转化率,使得度过平台期迎来下一个增长期。
● 变现期:营收成本、用户激活召回、LTV、CAC、渠道分析等指标
3、数据分析
分析方法:有效的数据分析方法能够深度挖掘数据的价值,常见的数据分析法与模型有用户分群、A/B测试、多维事件分析、漏斗分析、AARRR分析等等
这里主要以漏斗分析法、AARRR分析模型、A/B测试、多维事件分析为例展开:
● 漏斗分析法
分析从潜在用户到最终转化用户这个过程中用户数量的变化趋势,从而寻找到最佳的优化空间,这个方法被普遍用于产品运营的各个关键流程分析中。
何为用户转化漏斗,就是你的业务是如何一步步将一个用户转化过来。比如:
活动:活动展示—>点击详情—>转化
约妹子:搭讪—>约会—>牵手->......
经过的每个阶段,都可以拆为好几个子阶段。而每一个阶段都会有用户流失、用户留存下来。对漏斗的每一个环节准确地记录数据,以便分析和优化各个环节的转化率,是数据化运营的基础设施。
比如一个电商的活动页,它的漏斗模型应该是这样的:
下单率
从浏览活动页面到详情页的转化率是50%,在详情页下单的下单率是10%,最终下单到付款的转化率是40%。
有这么个漏斗,我们就可以分析每个环节代表了什么,该如何去改善:
活动页—>详情页uv:页面上的内容是否醒目,商品是否是用户喜欢的,需根据页面点击情况及时替换点击效果差的商品。
详情页uv—>下单人数:详情页是否吸引人,页面加载速度是否有影响,是否需要将商品重新排序。
下单人数—>付款人数:是否支付引导差,支付工具是否有故障,是否低于业内平均指标。
另外,在同一个系统内部,也需要做转化率进行对比,比如本月与上月,本周与上周,增加了还是减少了,这样才能得出更为准确的结论与发现问题。
● AARRR模型
AARRR(Acquisition、Activation、Retention、Revenue、Refer)是硅谷的一个风险投资人戴维 · 麦克鲁尔在2008年时创建的,分别是指获取、激活、留存、收入和推荐。
AARRR
以下例子中渠道A与渠道B哪一个更优?
比如游戏AARRR各阶段指标
1.A(How do users find us?)
DNU(日新注册且登陆用户数)、推广渠道监测(成本、流量)
2.A(Do users have a great first experience?)
DAU(每日登陆过游戏用户数)、日均使用时长、道具关联分析模型
3.R(Do users come back?)
留存率(次日留存、7日留存、21日留存、30留存)、流失率、流失预警分析模型
4.R(How do you make money?)
PR(付费率)、 ARPU(平均每用户收入)、ARPPU(平均每付费用户收入))、LTV(生命周期价值)
5.R(Do users tell others?)
K-factor、NPS等
● A/B测试
A/B测试就是通过数据支撑,不同渠道、不同人群、最终选定方案。
A/B测试需要有一定的数据支撑,建立准确性与效率高的框架,比如针对不同渠道、用户分群发布、灰度发布等来得出合适方案,这里不加以展开.
AB测
● 多维事件分析法
多维事件分析,从多个角度细分数据,从中发现数据变化的具体原因。行为事件与维度的结合可以得到数据指标,比如在电商应用中:
行为事件(1H):搜索商品、点击商品详情、提交订单、支付订单、售后服务等等都是一系列事件
维度(5W):人(who)可以从姓名、性别、年龄;时间(when)可以从停留时间、下单事件、付款事件、到货时间等细分;从哪里(where)可以从IP、城市、运营商、OS、机型、IMEI、网络接入方式(2G/3G/4G/WIFI)等细分;原因(why)可原因(why)可以从爱好、需求层级等细分;事情(what)可以从主题、步骤等细分。
两者结合就可以得出多维度指标,比如用户在哪个区域下订单,从什么渠道过来的,过去一段事件支付订单款项多少等等......
四、数据不是万能的
数据虽然不可或缺,但也不是万能的,比如在产品创新方向上很难获得驱动,在长期的用户反馈上很难获得数据的足够判断,那么真正能驱动一款产品的用户快速增长,靠的都是什么方法呢?
验证
- 做真正有意义的产品
市场上很大一部分产品都是意义不大的,尤其在这个存量过于饱和的市场下,要获得用户的快速增长,还是应该回到产品的核心上来,创造真正有价值的东西,辅以数据驱动,这样的结合可能能获得更大的增长。
- 塑造品牌价值
对核心用户尤其要重点塑造品牌观念,在传统行业中,众多企业做品牌的重视度高于互联网行业的企业,而在互联网确是常常不被重视的,与本身的燥热有很大关系,也许我们可以看看健身应用Keep的slogan与品牌塑造案例里面学习到更多的东西。
- 利用增长黑客技术
在《增长黑客》这本书里面,谈到了很多增长黑客技术增长的案例,如何低成本的获得用户增长等等。
五、最后推荐一些数据分析的书籍
• 《Head First Statistics》:深入浅出统计学
• 《精益数据分析》
• 《数据之魅-基于开源工具的数据分析》
• 《数据挖掘-市场营销、销售与客户关系管理领域应用》
• 《R语言实战》
作者:冯海平,微信公众号:每周看(id:Jason-View),个人微信(eistudio),三年创业者&产品经理,在骑行健身、社交、电商产品一路摸爬滚打,专注于对互联网产品的研究与总结,欢迎勾搭。
本文系作者原创投稿鸟哥笔记发布,转载请注明作者信息及出处。
我们致力于提供一个高质量内容的交流平台。为落实国家互联网信息办公室“依法管网、依法办网、依法上网”的要求,为完善跟帖评论自律管理,为了保护用户创造的内容、维护开放、真实、专业的平台氛围,我们团队将依据本公约中的条款对注册用户和发布在本平台的内容进行管理。平台鼓励用户创作、发布优质内容,同时也将采取必要措施管理违法、侵权或有其他不良影响的网络信息。
一、根据《网络信息内容生态治理规定》《中华人民共和国未成年人保护法》等法律法规,对以下违法、不良信息或存在危害的行为进行处理。
1. 违反法律法规的信息,主要表现为:
1)反对宪法所确定的基本原则;
2)危害国家安全,泄露国家秘密,颠覆国家政权,破坏国家统一,损害国家荣誉和利益;
3)侮辱、滥用英烈形象,歪曲、丑化、亵渎、否定英雄烈士事迹和精神,以侮辱、诽谤或者其他方式侵害英雄烈士的姓名、肖像、名誉、荣誉;
4)宣扬恐怖主义、极端主义或者煽动实施恐怖活动、极端主义活动;
5)煽动民族仇恨、民族歧视,破坏民族团结;
6)破坏国家宗教政策,宣扬邪教和封建迷信;
7)散布谣言,扰乱社会秩序,破坏社会稳定;
8)宣扬淫秽、色情、赌博、暴力、凶杀、恐怖或者教唆犯罪;
9)煽动非法集会、结社、游行、示威、聚众扰乱社会秩序;
10)侮辱或者诽谤他人,侵害他人名誉、隐私和其他合法权益;
11)通过网络以文字、图片、音视频等形式,对未成年人实施侮辱、诽谤、威胁或者恶意损害未成年人形象进行网络欺凌的;
12)危害未成年人身心健康的;
13)含有法律、行政法规禁止的其他内容;
2. 不友善:不尊重用户及其所贡献内容的信息或行为。主要表现为:
1)轻蔑:贬低、轻视他人及其劳动成果;
2)诽谤:捏造、散布虚假事实,损害他人名誉;
3)嘲讽:以比喻、夸张、侮辱性的手法对他人或其行为进行揭露或描述,以此来激怒他人;
4)挑衅:以不友好的方式激怒他人,意图使对方对自己的言论作出回应,蓄意制造事端;
5)羞辱:贬低他人的能力、行为、生理或身份特征,让对方难堪;
6)谩骂:以不文明的语言对他人进行负面评价;
7)歧视:煽动人群歧视、地域歧视等,针对他人的民族、种族、宗教、性取向、性别、年龄、地域、生理特征等身份或者归类的攻击;
8)威胁:许诺以不良的后果来迫使他人服从自己的意志;
3. 发布垃圾广告信息:以推广曝光为目的,发布影响用户体验、扰乱本网站秩序的内容,或进行相关行为。主要表现为:
1)多次发布包含售卖产品、提供服务、宣传推广内容的垃圾广告。包括但不限于以下几种形式:
2)单个帐号多次发布包含垃圾广告的内容;
3)多个广告帐号互相配合发布、传播包含垃圾广告的内容;
4)多次发布包含欺骗性外链的内容,如未注明的淘宝客链接、跳转网站等,诱骗用户点击链接
5)发布大量包含推广链接、产品、品牌等内容获取搜索引擎中的不正当曝光;
6)购买或出售帐号之间虚假地互动,发布干扰网站秩序的推广内容及相关交易。
7)发布包含欺骗性的恶意营销内容,如通过伪造经历、冒充他人等方式进行恶意营销;
8)使用特殊符号、图片等方式规避垃圾广告内容审核的广告内容。
4. 色情低俗信息,主要表现为:
1)包含自己或他人性经验的细节描述或露骨的感受描述;
2)涉及色情段子、两性笑话的低俗内容;
3)配图、头图中包含庸俗或挑逗性图片的内容;
4)带有性暗示、性挑逗等易使人产生性联想;
5)展现血腥、惊悚、残忍等致人身心不适;
6)炒作绯闻、丑闻、劣迹等;
7)宣扬低俗、庸俗、媚俗内容。
5. 不实信息,主要表现为:
1)可能存在事实性错误或者造谣等内容;
2)存在事实夸大、伪造虚假经历等误导他人的内容;
3)伪造身份、冒充他人,通过头像、用户名等个人信息暗示自己具有特定身份,或与特定机构或个人存在关联。
6. 传播封建迷信,主要表现为:
1)找人算命、测字、占卜、解梦、化解厄运、使用迷信方式治病;
2)求推荐算命看相大师;
3)针对具体风水等问题进行求助或咨询;
4)问自己或他人的八字、六爻、星盘、手相、面相、五行缺失,包括通过占卜方法问婚姻、前程、运势,东西宠物丢了能不能找回、取名改名等;
7. 文章标题党,主要表现为:
1)以各种夸张、猎奇、不合常理的表现手法等行为来诱导用户;
2)内容与标题之间存在严重不实或者原意扭曲;
3)使用夸张标题,内容与标题严重不符的。
8.「饭圈」乱象行为,主要表现为:
1)诱导未成年人应援集资、高额消费、投票打榜
2)粉丝互撕谩骂、拉踩引战、造谣攻击、人肉搜索、侵犯隐私
3)鼓动「饭圈」粉丝攀比炫富、奢靡享乐等行为
4)以号召粉丝、雇用网络水军、「养号」形式刷量控评等行为
5)通过「蹭热点」、制造话题等形式干扰舆论,影响传播秩序
9. 其他危害行为或内容,主要表现为:
1)可能引发未成年人模仿不安全行为和违反社会公德行为、诱导未成年人不良嗜好影响未成年人身心健康的;
2)不当评述自然灾害、重大事故等灾难的;
3)美化、粉饰侵略战争行为的;
4)法律、行政法规禁止,或可能对网络生态造成不良影响的其他内容。
二、违规处罚
本网站通过主动发现和接受用户举报两种方式收集违规行为信息。所有有意的降低内容质量、伤害平台氛围及欺凌未成年人或危害未成年人身心健康的行为都是不能容忍的。
当一个用户发布违规内容时,本网站将依据相关用户违规情节严重程度,对帐号进行禁言 1 天、7 天、15 天直至永久禁言或封停账号的处罚。当涉及欺凌未成年人、危害未成年人身心健康、通过作弊手段注册、使用帐号,或者滥用多个帐号发布违规内容时,本网站将加重处罚。
三、申诉
随着平台管理经验的不断丰富,本网站出于维护本网站氛围和秩序的目的,将不断完善本公约。
如果本网站用户对本网站基于本公约规定做出的处理有异议,可以通过「建议反馈」功能向本网站进行反馈。
(规则的最终解释权归属本网站所有)