APP推广合作
联系“鸟哥笔记小乔”
关于如何从0到1搭建推荐策略产品的思考(一)
2021-03-16 16:18:50

一、搭建推荐策略的必要性

在做一件事情之前先要问问为什么要做这个事情,这样才能在整个实施的过程中游刃有余,有的放矢。

不过,回答这个问题之前需要对推荐系统有个总体的认知。

1、关于推荐系统

先大概回顾一下整个互联网阶段对信息处理的演变过程。随着信息技术和互联网的发展,一方面用户足不出户就可以得到的大多数的信息,但是另一方面却逐渐受到很多无关信息的打扰,也就是信息过载。

为了解决信息过载的问题,整个信息处理的过程大概经过了三次演变:

第一次即以门户网站为代表的分类处理技术。通过对互联网的信息,内容进行分类处理,并且在用户端进行不同入口的展示,极大的方便了用户根据类别来筛选自己感兴趣的内容,极具代表性的就是各种门户网站。但是随着内容越来越多,分类也越来越多,太多的分类对用户来说也造成了信息过载,随着出现了第二次演变。

二次演变即以PC互联网时代google,百度为代表的搜索引擎。用户可以根据自己明确的目标需求进行关键词查找,繁重的目标内容检索工作交给了机器去处理,极大的提升了用户信息查看的效率。不难发现,搜索其实是解决了用户在有明确目标的情况下信息检索需求。但是如果用户没有明确的目标呢,这时候搜索引擎也无能为力。紧接着,第三次演变到来。

第三次演变即以移动互联网时代的个性化推荐,也即千人千面,每个人看到的都是单独为其量身打造的内容。和搜索引擎不一样的是,即使用户不主动提供明确的需求,只要它在互联网上发生过相关的行为,那么推荐就可以给到用户最为感兴趣的内容。

简单来说,根据用户的历史行为进行用户兴趣建模,结合内容的特征,给到用户最能满足其兴趣和需求的内容,即推荐

而推荐策略解决的问题就是如何能够推荐出让用户满意,让业务受益的内容。

当然,这里的内容(一般称之为item)不限其具体的形态,可以是商品,可以是文章,可以是服务等等。

二、什么业务适合做推荐策略

了解推荐的概念之后,到底哪些业务,哪些场景非常适合去做推荐系统,或者说应该去做推荐策略呢?这个也是我一直思考的问题,总结了以下几点:

2.1 有海量的内容

推荐系统的初衷就是从海量的item当中选出用户最感兴趣的,所以首先要有海量的item,数量不足,就无所谓选择了

另一方面,从策略的角度来讲,一个策略从诞生,到上线,再到验证,整个过程都需要海量的数据参与,比如item feature提取,模型训练,指标验证等等,海量的数据能够确保整个过程的准确性、可行性和科学性。

2.2 有海量的用户

这个其实和海量的内容是相辅相成的。因为推荐策略本身就是来链接用户和内容的,所以从这个角度来讲的话,有海量内容,就需要有海量的用户与之对应,否则策略是不靠谱的。

从另一个角度来讲,推荐策略本身是为了提高流量的利用效率,这种利用效率可以体现为转化率,UV价值,RPM,GMV等具体指标,需要大量的数据进行验证,否则就没有意义。

因此,如果业务还在发展初期,并没有多少用户,那从产品目标本身角度来讲,这个时候应该主要是以流量导向,而推荐策略并不占据很重要的优先级。

2.3 非工具类业务

工具类业务从其诞生一定会有一个明确的目标,对应的用户也有非常明确的需求,所以对于这种业务一般不会去推荐其他同类内容了。当然需要区别一下资源位和推荐

一般来说,目前应用推荐策略比较多的领域包括:电商,视频,音乐,阅读,社区,社交,广告,基于位置的服务等。

2.4 用户逛的场景居多

目前用户碎片化的时间越来越多,用来在产品上“闲逛”的时间也就越多,但是,与之对应的是同质化的产品也越来越多,在争取用户注意力这条道路上,能够基于用户的而历史行为,去实时,精准的推荐用户感兴趣的内容可能是一种最为高效的方式。

个性化推荐目前已经成为了一种新的趋势,每一个产品基本必备一个BI模块。不过,是否值得投入很大的资源去做一个看似高大上的推荐系统,还是需要好好考虑一下的。

三、搭建策略产品需要哪些条件?

下面有些内容在之前的文章里面提到过:这一年,我做策略产品遇到的坑,在一个业务线搭建推荐策略产品时,需要先看看如下条件是否满足:

1、结构化数据

现在产品人经常讲的数据驱动,我觉得更全面的说是结构化数据驱动。因为处理乱七八糟的数据是一种很糟(dan)糕(teng)的经历。

关于结构化数据的定义可以看之前的文章。对于搭建策略产品而言,主要看三个:

(1) 产品埋点是否完备

埋点是唯一能够准确,实时的采集到线上用户行为的手段,而对于链接用户和物品信息的推荐产品来说,用户行为的重要性就不言而喻了。

(2) 埋点数据是否存储

对于数据来说,埋点仅仅解决了线上是否有采集工具的问题,至于是否能够真正发挥其数据价值还需要看这些数据是否被存储下来。

就类似城市摄像头,如果仅仅布置了一个可以实时显示当前区域内景象的工具,其实对于城市建设没有任何用处。

在我们之前的一次实施的过程中就遇到过类似的问题。uuid(用户设备编号)本身各种日志是有记录的,但是数据表中却没有把这个字段存下来,导致无法直接使用,如果进行表结构改动,做研发的同学应该知道,这个工程量和复杂量绝对不小。

(3) 数据存储结构是否合理

最后一个就是关于存储结构的问题,主要是指数据表结构设计的是否合理。

我见过很多业务线的后台数据的表结构就是按需建表,没有一个统一的规划,就类似一个大的房子,没有提前做统一规划,而是按照各自需要进行分割,结果可想而知。

最主要的额影响就是在搭建系统过程中,表结构需要不停的进行整合,重建,本来三天可以进行入方案开发,会延期一周甚至更长时间用来处理这些问题。

一个不合理的数据库设计,会导致工程效率低下。

这些都是我亲身经历过的事情。

可以说以上三点,直接决定了一个业务线是否能够搭建推荐策略产品。

还是那句话:

底层数据各种属性不全,最好的规则也白搭。

引以为戒。

总之,结构化的数据对于推荐策略产品的搭建主要有两个作用:

一是用于用户行为feature的建立用于推荐结果的召回,比如点击行为,关注行为,加购行为,下单行为等;另一方面是用于对推荐效果的验证,主要是通过线上埋点采集数据,进行计算相关指标进行推荐效果检验。

另外再说一下我关于数据驱动的理解:

目前的数据驱动其实大多数停留在数据佐证,人驱动上面,换句话说大多数情况下把数据当做一种工具,用来证实或证伪,然后人再去做相应的决策。

我理解真正的数据驱动应该在用户进来的那一刻开始,数据工程就开始运作,来决定给用户展示什么,怎么展示,怎么引导

2、是否有较好的应用场景

前面也提到了,不是所有的业务都适合做推荐策略产品,其实最主要是要看这个业务线当中是否有比较好的应用场景进行支持。

通常来说,我觉得有两种场景是可以用推荐系统进行满足的:

第一种:更加高效满足用户需求

比如同样对于笔记本这种产品,当我们还无法感知用户对品牌,配置需求的时候,可以按照商品本身各维度进行推荐(物品单边特征),争取把性价比最高,品质最好的产品推荐给用户,逐步引导用户产生消费行为。

这种场景通常可以称作是“千人一面”的场景,就是把业务内最“好”的东西展示给用户,这个“好”的定义随业务线的不同而不同;

另一种:满足用户的个性化需求

当我们掌握大量了用户行为数据的时候,就可以大概知道一个用户是什么样的,比如他喜欢的品类,能够承受的价格等等,从而去建立他的标签模型,依据该模型即可进行个性化推荐了。

这种场景通常可以成为“千人千面”场景,典型的淘宝首页就是按照这种场景进行搭建,所以,现在一般不叫淘宝购物,而叫“逛”淘宝,这种“逛”的背后就是数据决策的驱动。

其实不难发现,对于不明确用户目标的情况下,推荐有助于高效,精准的给到用户最满意的物品,是这种场景下的不二之选。

以上。

-END-

夏唬人
分享到朋友圈
收藏
收藏
评分

综合评分:

我的评分
Xinstall 15天会员特权
Xinstall是专业的数据分析服务商,帮企业追踪渠道安装来源、裂变拉新统计、广告流量指导等,广泛应用于广告效果统计、APP地推与CPS/CPA归属统计等方面。
20羽毛
立即兑换
一书一课30天会员体验卡
领30天VIP会员,110+门职场大课,250+本精读好书免费学!助你提升职场力!
20羽毛
立即兑换
顺丰同城急送全国通用20元优惠券
顺丰同城急送是顺丰推出的平均1小时送全城的即时快送服务,专业安全,准时送达!
30羽毛
立即兑换
夏唬人
夏唬人
发表文章57
京东/美团/阿里策略产品专家。《策略产品经理,数据赋能业务》作者
确认要消耗 0羽毛购买
关于如何从0到1搭建推荐策略产品的思考(一)吗?
考虑一下
很遗憾,羽毛不足
我知道了

我们致力于提供一个高质量内容的交流平台。为落实国家互联网信息办公室“依法管网、依法办网、依法上网”的要求,为完善跟帖评论自律管理,为了保护用户创造的内容、维护开放、真实、专业的平台氛围,我们团队将依据本公约中的条款对注册用户和发布在本平台的内容进行管理。平台鼓励用户创作、发布优质内容,同时也将采取必要措施管理违法、侵权或有其他不良影响的网络信息。


一、根据《网络信息内容生态治理规定》《中华人民共和国未成年人保护法》等法律法规,对以下违法、不良信息或存在危害的行为进行处理。
1. 违反法律法规的信息,主要表现为:
    1)反对宪法所确定的基本原则;
    2)危害国家安全,泄露国家秘密,颠覆国家政权,破坏国家统一,损害国家荣誉和利益;
    3)侮辱、滥用英烈形象,歪曲、丑化、亵渎、否定英雄烈士事迹和精神,以侮辱、诽谤或者其他方式侵害英雄烈士的姓名、肖像、名誉、荣誉;
    4)宣扬恐怖主义、极端主义或者煽动实施恐怖活动、极端主义活动;
    5)煽动民族仇恨、民族歧视,破坏民族团结;
    6)破坏国家宗教政策,宣扬邪教和封建迷信;
    7)散布谣言,扰乱社会秩序,破坏社会稳定;
    8)宣扬淫秽、色情、赌博、暴力、凶杀、恐怖或者教唆犯罪;
    9)煽动非法集会、结社、游行、示威、聚众扰乱社会秩序;
    10)侮辱或者诽谤他人,侵害他人名誉、隐私和其他合法权益;
    11)通过网络以文字、图片、音视频等形式,对未成年人实施侮辱、诽谤、威胁或者恶意损害未成年人形象进行网络欺凌的;
    12)危害未成年人身心健康的;
    13)含有法律、行政法规禁止的其他内容;


2. 不友善:不尊重用户及其所贡献内容的信息或行为。主要表现为:
    1)轻蔑:贬低、轻视他人及其劳动成果;
    2)诽谤:捏造、散布虚假事实,损害他人名誉;
    3)嘲讽:以比喻、夸张、侮辱性的手法对他人或其行为进行揭露或描述,以此来激怒他人;
    4)挑衅:以不友好的方式激怒他人,意图使对方对自己的言论作出回应,蓄意制造事端;
    5)羞辱:贬低他人的能力、行为、生理或身份特征,让对方难堪;
    6)谩骂:以不文明的语言对他人进行负面评价;
    7)歧视:煽动人群歧视、地域歧视等,针对他人的民族、种族、宗教、性取向、性别、年龄、地域、生理特征等身份或者归类的攻击;
    8)威胁:许诺以不良的后果来迫使他人服从自己的意志;


3. 发布垃圾广告信息:以推广曝光为目的,发布影响用户体验、扰乱本网站秩序的内容,或进行相关行为。主要表现为:
    1)多次发布包含售卖产品、提供服务、宣传推广内容的垃圾广告。包括但不限于以下几种形式:
    2)单个帐号多次发布包含垃圾广告的内容;
    3)多个广告帐号互相配合发布、传播包含垃圾广告的内容;
    4)多次发布包含欺骗性外链的内容,如未注明的淘宝客链接、跳转网站等,诱骗用户点击链接
    5)发布大量包含推广链接、产品、品牌等内容获取搜索引擎中的不正当曝光;
    6)购买或出售帐号之间虚假地互动,发布干扰网站秩序的推广内容及相关交易。
    7)发布包含欺骗性的恶意营销内容,如通过伪造经历、冒充他人等方式进行恶意营销;
    8)使用特殊符号、图片等方式规避垃圾广告内容审核的广告内容。


4. 色情低俗信息,主要表现为:
    1)包含自己或他人性经验的细节描述或露骨的感受描述;
    2)涉及色情段子、两性笑话的低俗内容;
    3)配图、头图中包含庸俗或挑逗性图片的内容;
    4)带有性暗示、性挑逗等易使人产生性联想;
    5)展现血腥、惊悚、残忍等致人身心不适;
    6)炒作绯闻、丑闻、劣迹等;
    7)宣扬低俗、庸俗、媚俗内容。


5. 不实信息,主要表现为:
    1)可能存在事实性错误或者造谣等内容;
    2)存在事实夸大、伪造虚假经历等误导他人的内容;
    3)伪造身份、冒充他人,通过头像、用户名等个人信息暗示自己具有特定身份,或与特定机构或个人存在关联。


6. 传播封建迷信,主要表现为:
    1)找人算命、测字、占卜、解梦、化解厄运、使用迷信方式治病;
    2)求推荐算命看相大师;
    3)针对具体风水等问题进行求助或咨询;
    4)问自己或他人的八字、六爻、星盘、手相、面相、五行缺失,包括通过占卜方法问婚姻、前程、运势,东西宠物丢了能不能找回、取名改名等;


7. 文章标题党,主要表现为:
    1)以各种夸张、猎奇、不合常理的表现手法等行为来诱导用户;
    2)内容与标题之间存在严重不实或者原意扭曲;
    3)使用夸张标题,内容与标题严重不符的。


8.「饭圈」乱象行为,主要表现为:
    1)诱导未成年人应援集资、高额消费、投票打榜
    2)粉丝互撕谩骂、拉踩引战、造谣攻击、人肉搜索、侵犯隐私
    3)鼓动「饭圈」粉丝攀比炫富、奢靡享乐等行为
    4)以号召粉丝、雇用网络水军、「养号」形式刷量控评等行为
    5)通过「蹭热点」、制造话题等形式干扰舆论,影响传播秩序


9. 其他危害行为或内容,主要表现为:
    1)可能引发未成年人模仿不安全行为和违反社会公德行为、诱导未成年人不良嗜好影响未成年人身心健康的;
    2)不当评述自然灾害、重大事故等灾难的;
    3)美化、粉饰侵略战争行为的;
    4)法律、行政法规禁止,或可能对网络生态造成不良影响的其他内容。


二、违规处罚
本网站通过主动发现和接受用户举报两种方式收集违规行为信息。所有有意的降低内容质量、伤害平台氛围及欺凌未成年人或危害未成年人身心健康的行为都是不能容忍的。
当一个用户发布违规内容时,本网站将依据相关用户违规情节严重程度,对帐号进行禁言 1 天、7 天、15 天直至永久禁言或封停账号的处罚。当涉及欺凌未成年人、危害未成年人身心健康、通过作弊手段注册、使用帐号,或者滥用多个帐号发布违规内容时,本网站将加重处罚。


三、申诉
随着平台管理经验的不断丰富,本网站出于维护本网站氛围和秩序的目的,将不断完善本公约。
如果本网站用户对本网站基于本公约规定做出的处理有异议,可以通过「建议反馈」功能向本网站进行反馈。
(规则的最终解释权归属本网站所有)

我知道了
恭喜你~答对了
+5羽毛
下一次认真读哦
成功推荐给其他人
+ 10羽毛
评论成功且进入审核!审核通过后,您将获得10羽毛的奖励。分享本文章给好友阅读最高再得15羽毛~
(羽毛可至 "羽毛精选" 兑换礼品)
好友微信扫一扫
复制链接