APP推广合作
联系“鸟哥笔记小乔”
如何用决策树模型做数据分析?
2020-12-08 10:16:24



 什么是决策树?

决策树模型本质是一颗由多个判断节点组成的树。在树的每个节点做参数判断,进而在树的最末枝(叶结点)能够对所关心变量的取值作出最佳判断。通常,一棵决策树包含一个根结点,若干内部节点和若干叶结点,叶结点对应决策分类结果。分支做判断,叶子下结论
 
我们看一个简单的决策树的模型,通过动物的一些特点来判断它是否是鱼类,在决策树模型中,我们来看每一个节点是如何做判断的。我们将所有要研究的动物作为树最上端的起点,对它进行第一个判断,是否能脱离水生存?如果判断为是的话,它不是鱼类。如果为否的话,我们还要再进行下一个判断,是否有脚蹼?如果是的话,它就是非鱼类,如果否的话就是鱼类。

我们仅仅是通过最多两个层次的判断,在树最末端的叶子结点,可以对我们感兴趣的问题给出了一个相对而言的最佳决策。这个就是决策树的逻辑,非常简单且和人脑理解事物的逻辑很类似。

决策树是一种简单高效并且具有强解释性的模型,广泛应用于数据分析领域。


  • 简单:逻辑相对简单,整个算法没有更复杂的逻辑,只是对节点进行分叉;
  • 高效:模型训练速度较快;
  • 强解释性:模型的判断逻辑可以用语言清晰的表达出来,比如上述决策树案例中的判断,就可以直接用语言表述成:脱离水不能生存的没有脚蹼的动物,我们判断它是鱼;


 
决策树模型应用于数据分析的场景主要有三种:


  • 监督分层;
  • 驱动力分析:某个因变量指标受多个因素所影响,分析不同因素对因变量驱动力的强弱(驱动力指相关性,不是因果性);
  • 预测:根据模型进行分类的预测;


 


熵是什么?


熵是描述判断的不确定性,大多数决策树的最终判断,并不是100%准确,决策树只是基于不确定性,作出最优的判断。
 
比如上述决策树案例,我们判断脱离水依然可以生存的是“非鱼类”。但是有一种特殊的鱼叫做非洲肺鱼,它脱离水后依然可以存活4年之久。虽然不是100%正确,我们在这个叶结点做出非鱼类的判断,是因为所有脱离水依然可以生存的动物里,有非常大部分都不是鱼。虽然这个判断有很大可能性是正确的,但判断依然存在着一些不确定性。
 
那么不确定性指的是什么呢?如下图,女生占比为50%,具有最大的不确定性;女生占比0%或者100%,则具备最小的不确定性。女生占比30%,具有中等不确定性;如果女性占比为70%的话,我们这个时候猜测是女性,出错可能性是1-70%,即30%,和刚刚的情况相同。也就是说,10个人中女性占比为30%,或是70%,我们虽然给出的判断不同,但是两个判断出错的可能性是一样的,都是30%;
图:在10个人中,判断随机挑选出来一个人,性别是男还是女 
 
如果尝试使用一个统计量E来表示不确定性的话,并且规定E的取值在0和1之间。他和人群中女性的占比应该满足这样一条曲线的关系,当女性占比为0或者100%的时候,进行判断的不确定性最小;E取最小值0当女性占比为50%的时候,判断的不确定性最大,E取最大值1;当女性占比取0到50%,或者50%到100%之间的值的时候,E的取值介于0到1之间。并且取值相对女性占比50%是对称的。
 
熵即是用来描述以上这种不确定性,它的数学表达式为:

Pi含义:对于事件,有c种可能的结果,每一种可能结果的概率为P1、P2…Pc;
熵的取值在0-1之间;一个判断的不确定性越大,熵越大;
 


信息增益


信息增益表示经过一次决策判断(分叉)后,人群熵值下降的大小,即母节点的熵与两个子节点熵值和的差值。


如上图,信息增益(IG) = 0.5842 - ( 38% * 0.9507 + 62 * 0 )=0.22
 



决策树算法实现步骤


我们继续用上一篇文章《如何用线性回归模型做数据分析》中的共享单车服务满意分数据集来做案例,分析哪一类人群更加偏向于成为公司的推荐者,我们需要分析用户特征,更好的区分出推荐者。


 
4.1测量节点对应人群的熵
 
决策树模型的第一步,是测量每个节点对应人群的熵值,最终我们得到可以判断推荐者的决策树。如下图,每个节点中标注两个数字,上面是推荐者比例,下面是用户群占比。初始节点的推荐者比例为0.14,再没任何分叉前,人群占比100%。我们用熵来度量每个节点对应人群的不确定性,推荐者比例趋近0%和100%的人群,熵的值也趋近于0,推荐者比例趋近50%的人群,熵的值则趋近于1。
 
在这个案例中,我们想知道哪一类人更加偏向成为公司的推荐者,也就是说,我们希望通过决策树,可以尽量地划分出是或者不是推荐者这个事情最为确定的人群。如果这样的人群在树的最终结点、也就是叶子结点可以被很好地划分出来的话,那么叶子结点所对应的人群的特征,就是推荐者或者非推荐者的典型特征
 
反应在人群的熵值计算,更大的确定性对应于比较小的熵值。我们实际上是希望通过决策树不断地分叉,使得节点的熵值越来越低,用户的label越来越纯。
  
 
 4.2节点的分叉-信息增益

我们使用信息增益(IG)来判断决策树的分叉方式。
节点分叉规则:在每个节点尝试按照不同特征变量的各种分组方式,选取信息增益最大(熵最小)的方式。

 4.3在特定情况树节点停止分叉
 
决策树不会一直不停分叉,决策树停止分叉的条件通常有:


  • 树的深度 — 如规定树的深度不能超过3

  • 叶子结点样本数 — 如叶子结点样本数不能小于10

  • 信息增益 — 如每一个分叉的信息增益不能小于0.2(R中的默认值)



停止分叉:再分叉会增加复杂度但是效果没有提高,叶子越多越复杂,会加重解释复杂性。


决策树在数据分析中的实战流程


我们了解了决策树模型的算法原理,那么它如何应用在日常的数据分析工作中呢?
继续我们刚才的案例,我们想探究分析用户推荐程度的主要影响因素是什么?可以用决策树模型将用户按照推荐者比例高低进行分层。
 
一百条数据,由公司员工随机采访100名用户产生,采访对象是北京市四个城区(西城区、东城区、海淀区、朝阳区)的居民,组别分为实验组和对照组。

 5.1导入数据集
5.2切割自变量和因变量


5.3将分类变量转换为哑变量
Python大多数算法模型无法直接输入分类变量

5.4训练模型


圈出叶子点-最终划分出的人群分层


 5.5分析结果

通过人群特征取值的判断,1、我们划分出了推荐者比例有显著区别的人群2、找出了区分推荐者人群的关键特征,例如:海淀区用户、29岁及以上等
 ‘
5.6决策树扩展


  • 模型建立后,可以将模型用作分类预测;
  • 决策树不只可应用于预测量为分类变量,还可应用于数值型因变量,只需将熵改为连续变量的方差;
  • 特征划分的方法除了信息增益方法外,还可以用增益率(**.5决策树)、基尼指数(CART决策树);
  • 剪枝是决策树算法中防止过拟合的主要手段,分为预剪枝与后剪枝。预剪枝指在决策树生成过程中,对每个结点在划分前进行估计,若当前结点划分不能使决策树泛化能力提升则停止划分。后剪枝指先从训练集生成一颗决策树,自底向上对非叶结点进行考察,若该结点对应的子树替换为叶结点能使决策树泛化能力提升,则该子树替换为叶结点;
大洛同学
分享到朋友圈
收藏
收藏
评分

综合评分:

我的评分
Xinstall 15天会员特权
Xinstall是专业的数据分析服务商,帮企业追踪渠道安装来源、裂变拉新统计、广告流量指导等,广泛应用于广告效果统计、APP地推与CPS/CPA归属统计等方面。
20羽毛
立即兑换
一书一课30天会员体验卡
领30天VIP会员,110+门职场大课,250+本精读好书免费学!助你提升职场力!
20羽毛
立即兑换
顺丰同城急送全国通用20元优惠券
顺丰同城急送是顺丰推出的平均1小时送全城的即时快送服务,专业安全,准时送达!
30羽毛
立即兑换
大洛同学
大洛同学
发表文章41
互联网行业,短视频/直播业务高级数据分析师
确认要消耗 0羽毛购买
如何用决策树模型做数据分析?吗?
考虑一下
很遗憾,羽毛不足
我知道了

我们致力于提供一个高质量内容的交流平台。为落实国家互联网信息办公室“依法管网、依法办网、依法上网”的要求,为完善跟帖评论自律管理,为了保护用户创造的内容、维护开放、真实、专业的平台氛围,我们团队将依据本公约中的条款对注册用户和发布在本平台的内容进行管理。平台鼓励用户创作、发布优质内容,同时也将采取必要措施管理违法、侵权或有其他不良影响的网络信息。


一、根据《网络信息内容生态治理规定》《中华人民共和国未成年人保护法》等法律法规,对以下违法、不良信息或存在危害的行为进行处理。
1. 违反法律法规的信息,主要表现为:
    1)反对宪法所确定的基本原则;
    2)危害国家安全,泄露国家秘密,颠覆国家政权,破坏国家统一,损害国家荣誉和利益;
    3)侮辱、滥用英烈形象,歪曲、丑化、亵渎、否定英雄烈士事迹和精神,以侮辱、诽谤或者其他方式侵害英雄烈士的姓名、肖像、名誉、荣誉;
    4)宣扬恐怖主义、极端主义或者煽动实施恐怖活动、极端主义活动;
    5)煽动民族仇恨、民族歧视,破坏民族团结;
    6)破坏国家宗教政策,宣扬邪教和封建迷信;
    7)散布谣言,扰乱社会秩序,破坏社会稳定;
    8)宣扬淫秽、色情、赌博、暴力、凶杀、恐怖或者教唆犯罪;
    9)煽动非法集会、结社、游行、示威、聚众扰乱社会秩序;
    10)侮辱或者诽谤他人,侵害他人名誉、隐私和其他合法权益;
    11)通过网络以文字、图片、音视频等形式,对未成年人实施侮辱、诽谤、威胁或者恶意损害未成年人形象进行网络欺凌的;
    12)危害未成年人身心健康的;
    13)含有法律、行政法规禁止的其他内容;


2. 不友善:不尊重用户及其所贡献内容的信息或行为。主要表现为:
    1)轻蔑:贬低、轻视他人及其劳动成果;
    2)诽谤:捏造、散布虚假事实,损害他人名誉;
    3)嘲讽:以比喻、夸张、侮辱性的手法对他人或其行为进行揭露或描述,以此来激怒他人;
    4)挑衅:以不友好的方式激怒他人,意图使对方对自己的言论作出回应,蓄意制造事端;
    5)羞辱:贬低他人的能力、行为、生理或身份特征,让对方难堪;
    6)谩骂:以不文明的语言对他人进行负面评价;
    7)歧视:煽动人群歧视、地域歧视等,针对他人的民族、种族、宗教、性取向、性别、年龄、地域、生理特征等身份或者归类的攻击;
    8)威胁:许诺以不良的后果来迫使他人服从自己的意志;


3. 发布垃圾广告信息:以推广曝光为目的,发布影响用户体验、扰乱本网站秩序的内容,或进行相关行为。主要表现为:
    1)多次发布包含售卖产品、提供服务、宣传推广内容的垃圾广告。包括但不限于以下几种形式:
    2)单个帐号多次发布包含垃圾广告的内容;
    3)多个广告帐号互相配合发布、传播包含垃圾广告的内容;
    4)多次发布包含欺骗性外链的内容,如未注明的淘宝客链接、跳转网站等,诱骗用户点击链接
    5)发布大量包含推广链接、产品、品牌等内容获取搜索引擎中的不正当曝光;
    6)购买或出售帐号之间虚假地互动,发布干扰网站秩序的推广内容及相关交易。
    7)发布包含欺骗性的恶意营销内容,如通过伪造经历、冒充他人等方式进行恶意营销;
    8)使用特殊符号、图片等方式规避垃圾广告内容审核的广告内容。


4. 色情低俗信息,主要表现为:
    1)包含自己或他人性经验的细节描述或露骨的感受描述;
    2)涉及色情段子、两性笑话的低俗内容;
    3)配图、头图中包含庸俗或挑逗性图片的内容;
    4)带有性暗示、性挑逗等易使人产生性联想;
    5)展现血腥、惊悚、残忍等致人身心不适;
    6)炒作绯闻、丑闻、劣迹等;
    7)宣扬低俗、庸俗、媚俗内容。


5. 不实信息,主要表现为:
    1)可能存在事实性错误或者造谣等内容;
    2)存在事实夸大、伪造虚假经历等误导他人的内容;
    3)伪造身份、冒充他人,通过头像、用户名等个人信息暗示自己具有特定身份,或与特定机构或个人存在关联。


6. 传播封建迷信,主要表现为:
    1)找人算命、测字、占卜、解梦、化解厄运、使用迷信方式治病;
    2)求推荐算命看相大师;
    3)针对具体风水等问题进行求助或咨询;
    4)问自己或他人的八字、六爻、星盘、手相、面相、五行缺失,包括通过占卜方法问婚姻、前程、运势,东西宠物丢了能不能找回、取名改名等;


7. 文章标题党,主要表现为:
    1)以各种夸张、猎奇、不合常理的表现手法等行为来诱导用户;
    2)内容与标题之间存在严重不实或者原意扭曲;
    3)使用夸张标题,内容与标题严重不符的。


8.「饭圈」乱象行为,主要表现为:
    1)诱导未成年人应援集资、高额消费、投票打榜
    2)粉丝互撕谩骂、拉踩引战、造谣攻击、人肉搜索、侵犯隐私
    3)鼓动「饭圈」粉丝攀比炫富、奢靡享乐等行为
    4)以号召粉丝、雇用网络水军、「养号」形式刷量控评等行为
    5)通过「蹭热点」、制造话题等形式干扰舆论,影响传播秩序


9. 其他危害行为或内容,主要表现为:
    1)可能引发未成年人模仿不安全行为和违反社会公德行为、诱导未成年人不良嗜好影响未成年人身心健康的;
    2)不当评述自然灾害、重大事故等灾难的;
    3)美化、粉饰侵略战争行为的;
    4)法律、行政法规禁止,或可能对网络生态造成不良影响的其他内容。


二、违规处罚
本网站通过主动发现和接受用户举报两种方式收集违规行为信息。所有有意的降低内容质量、伤害平台氛围及欺凌未成年人或危害未成年人身心健康的行为都是不能容忍的。
当一个用户发布违规内容时,本网站将依据相关用户违规情节严重程度,对帐号进行禁言 1 天、7 天、15 天直至永久禁言或封停账号的处罚。当涉及欺凌未成年人、危害未成年人身心健康、通过作弊手段注册、使用帐号,或者滥用多个帐号发布违规内容时,本网站将加重处罚。


三、申诉
随着平台管理经验的不断丰富,本网站出于维护本网站氛围和秩序的目的,将不断完善本公约。
如果本网站用户对本网站基于本公约规定做出的处理有异议,可以通过「建议反馈」功能向本网站进行反馈。
(规则的最终解释权归属本网站所有)

我知道了
恭喜你~答对了
+5羽毛
下一次认真读哦
成功推荐给其他人
+ 10羽毛
评论成功且进入审核!审核通过后,您将获得10羽毛的奖励。分享本文章给好友阅读最高再得15羽毛~
(羽毛可至 "羽毛精选" 兑换礼品)
好友微信扫一扫
复制链接